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FUNDAMENTAL MEASUREMENT FOR HEALTH SERVICES RESEARCH 

ABSTRACT 

 
Science advances on the basis of linear measurement systems that are invariant across 

different experimental conditions. However, most survey-based health sciences research employs 

measures that have never been tested for invariance. This study describes and demonstrates the 

mathematical properties underlying the additive formulations of probabilistic conjoint 

measurement (PCM), which provide the necessary and sufficient conditions for fundamental 

measurement. As a demonstration, PCM was applied to data from 23,767 persons who responded 

to the Medical Expenditure Panel Survey (MEPS) conducted by the Agency for Healthcare 

Research and Quality (AHRQ; formerly the Agency for Health Care Policy and Research 

(AHCPR)). This demonstration includes tests of five hypotheses: (1) that the quality of care 

(QOC) variable is quantitative, (2) that the data’s ordering of the survey items and rating 

categories is meaningful, (3) that the respondent measurement order remains constant over item 

subsamples, and that the item calibration order remains constant over respondent subsamples, (4) 

that there are no differences among the measures associated with respondents belonging to one 

or another of several different forms of insurance coverage (Private HMO, Public HMO, and 

Medicare), and (5) that each of three approaches to measurement (PCM, Item Response Theory, 

and the commonly used method of summated ratings) have specific scientific strengths and 

weaknesses that make them appropriate for general use as scientific measurement methods. None 

of the hypotheses were rejected, though (3) and (5) are strongly qualified. The results indicate 

two general conclusions: (1) PCM offers new insights into theories of QOC, and (2) it is possible 

to construct fundamental measurement systems of QOC variables. Finally, since QOC 

fundamental measurement systems can be constructed, it will be possible to equate and interpret 

the responses of different QOC surveys in the same metric.
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INTRODUCTION 

“It is a scientific platitude that there can be neither precise control nor prediction of 

phenomena without measurement…. It is nearly useless to have an exactly formulated 

quantitative theory if empirically feasible methods of measurement cannot be developed for a 

substantial portion of the quantitative concepts of the theory. Given a physical concept like that 

of mass or a psychological concept like that of habit strength, the point of the theory of 

measurement is to lay bare the structure of a collection of empirical relations which may be used 

to measure the characteristic of empirical phenomena corresponding to the concept. Why a 

collection of relations?  From an abstract standpoint a set of empirical data consists of a 

collection of relations between specified objects …The major source of difficulty in providing an 

adequate theory of measurement is to construct relations which have an exact and reasonable 

numerical interpretation and yet also have a technically practical interpretation” (Scott & Suppes, 

1958). 

 

The research reported here asks what empirical relations in quality of care survey data 

might provide the measurement quality needed for both exact numerical and technically practical 

interpretations. If a variable is to be measured precisely, then it needs to be 1) measurable on a 

linear (interval or ratio) scale, where 2) the measurement of objects does not depend on which 

measurement instrument is used, and 3) the properties of the measuring instrument do not change 

with the object measured. For instance, a person's height 1) represents a linear magnitude, 2) 

remains the same, no matter which ruler is used, and 3) the markings on the ruler remain in the 

same positions, regardless of who is measured. 

 That the three basic requirements of measurement can be met in the physical sciences is 

strikingly obvious. That these requirements can be attained in the health sciences is not so 

obvious, since most health science variables (e.g., pain, quality of life, etc.) are latent. Common 

practice assigns numeric values to observations of these variables and analyzes them as though 

they represent linear magnitudes. Such assignments arbitrarily depend on the perceptions of the 

 5



experimenter and the particular persons surveyed. Measurements based on such assignments are 

never linear or generalizable across laboratories. 

For example, summed rating scale responses are typically treated as linear measures. 

Consider a 3-category response format Disagree (1) / Neutral (2) / Agree (3) employed for a 

particular survey. Although the assigned numbers show a difference of 1 between successive 

categories, their true distances are unknown and may be highly variable (Wilson 1971; Duncan 

1984; Merbitz, Morris & Grip 1989; Wright & Linacre 1989; Michell 1990, 1997, 1999, 2000; 

Fisher 1993; Stucki, Daltroy, Katz, Johannesson & Liang 1996; Zhu 1996). The existence of a 

single unit difference between categories is typically assumed, with no effort made at producing 

supporting evidence, even though multiple studies have shown that rating categories usually are 

not equally spaced. In short, there is no more justification for assuming stable category distances 

of 1 than there is for assuming variable distances of 0.5 and 1.75, or 3.0 and 0.9. Experimenter-

defined numerical assignments to observations can be only ordinal, and never represent true 

magnitudes. Treating ordinal data as interval or ratio has been referred to as laying the 

“foundations of misinference” and is generally recognized as unscientific (Merbitz, et al. 1989). 

 Measurement theoreticians have shown conclusively that it is possible to construct 

interval quantitative measures using ordinal information (Scott & Suppes 1958; Rasch 1960; 

Luce & Tukey 1964; Andersen 1977; Wright 1977b, 1985, 1999; Falmagne 1979; Perline, 

Wright & Wainer 1979; Wright & Stone 1979; Andrich 1988, 1989; Suppes, Krantz, Luce & 

Tversky 1989). If ordinal data embody relationships prescribed by the axioms of additive 

conjoint measurement (ACM), then measures are linearly scaleable, and are as mathematically 

rigorous as physical measures. Accord with ACM axioms confirms that the relevant properties of 
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the measured objects are invariant with respect to the measurement instrument, and that the 

properties of the measuring instrument are invariant with respect to the objects measured. 

 

MEASUREMENT THEORY 

 Consider the case of a survey/test data set containing dichotomous responses (e.g., 

Yes/No; Agree/Disagree; True/False; Correct, Incorrect). Let n∈N represent a person from the 

person set, and i∈I an item from the item set; Xni is a person-item response from the set {0,1}, 

and Pni1 is the probability of a Xni=1 response, 0 < Pni1 < 1. From the N×I matrix of responses, a 

person's ability (βn) and an item's calibration (δi) are functions of 

( )( )βn r I r≈ −             ( )( )δi N s s≈ −                               (1a-1b) 

where the "person score" r and the “item score” s are sufficient statistics for β and δ, respectively 

(Andersen 1977). The set of person abilities β  and item difficulties δ  are obtained by 

maximizing the likelihood function 

( )( ) ( )L X P Pni N I ni
X

ni

X

i

I

n

N
ni ni

×

−

==
= −∏∏β δ, 1 1

1

11
1                  (1c) 

See Wright & Masters (1982) for a survey of various maximum likelihood estimation algorithms. 

ACM can be expressed probabilistically (Rasch 1960; Falmagne 1979; Perline, et al. 

1979; Wright 1985; Andrich 1988; Suppes, et al. 1989; Wright & Linacre 1989) with a model 

that specifies the log-odds (λni1) of a Xni=1 response as an additive function of βn and δi:  

( )n P Pni ni ni n i1 0 = = −λ β δ                          (2) 

where            ( )[ ]Pni1
1

1= + −
−

exp λ                (3) 
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and                       ( ) ( )[ ]P Pni ni0 1
1

1 1= − = +
−

exp λ                (4) 

It can be inferred from (2-4) that (λni1 > 0) ⇒ (Pni1 > .5), (λni1 < 0) ⇒ (Pni1 < .5), and  

(λni1 = 0) ⇒ (Pni1 = .5). 

The process at which the model relates to the N×I response matrix is illustrated by the 

following example. Table 1 shows a hypothetical data set created by six persons responding to a 

four-item survey. Persons and items are ordered by total score, and the set of person abilities β  

and item calibrations δ  are estimated by (1a) and (1b), respectively. This ordering 

approximates a pattern of overlapping triangles of 1s and 0s in the response matrix. An exception 

that proves (tests) the rule is provided by person f who unexpectedly endorsed z, the most 

difficult item, despite having a low score. Unexpected responses such as this provide 

opportunities for data quality assessment and improvement, and can stimulate construct 

clarifications by raising questions as to whether all respondents and items belong to the same 

respective populations (Wright 1977b; Wright & Stone 1979; Wright & Masters 1982; Smith, 

Schumacker & Bush 1998).  

 Since survey responses occur probabilistically and not deterministically, it is useful to 

evaluate the observed data matrix as response probabilities. Table 2 presents the person-item 

responses as a Pni1 matrix, obtained through substitution of the corresponding β and δ values into 

(3). The responses of persons a, b, c, d, and e agree with the model. In each of these cases, 

responses coded as 1 occurred when Pni1 > .50, and responses coded as 0 occurred when Pni1 < 

.50. The responses of persons c and d to items x and y contain a mix of 0 and 1 responses, 

plausible events considering Pni1=.50. The surprising "1" response of person f to item z has a .06 

probability. The low probability follows from the fact that this person’s measure (-1.1) is almost 

three logits below the item’s calibration (1.6). The improbability of this observation indicates a 
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contradiction of the measurement intention, and would require further investigation into possible 

data entry errors, sampling, or construct issues. 

 Why is it necessary for data to approximate modeled probabilities?  For convenience, 

consider persons a and b in measure group p, c and d into group q, and e and f into group r, as 

shown in the left side of Figure 1. The β estimates specify that the person relations are p > q > r, 

and the δ estimates specify that the item relations are w > x = y > z. According to the matrix of 

Pni1 values, the person order p > q > r is preserved for all items, and the item order w > x = y > z 

holds for all person measures. In other words, the person measurement order is invariant, 

regardless which items are used for measurement, and the item calibration order is invariant, 

regardless of which persons are measured. Removing responses to items w and y still preserves 

the Pni1 order of p > q > r for all i, and removing responses from persons with measure p 

preserves the Pni1 order for w > x = y > z for all n. These properties satisfy the independence 

axiom of ACM, a condition that requires person measurement to be free from the properties of 

the measuring instrument, and the properties of the measuring instrument remain invariant no 

matter which persons are measured. 

Though measurement invariance is attained by data adhering to the independence axiom, 

this property alone does not transform ordinal observations into interval measures. All measures 

at the quantitative (interval/ratio) level have additive characteristics, so both double cancellation 

and independence are needed for additivity. Double cancellation is illustrated in the right of 

Figure 1: Since the antecedents (px > qz and qw > rx) and the consequent (pw > rz) are satisfied, 

the probability matrix satisfies double cancellation.  

Because of their additive formulations, probabilistic conjoint measurement (PCM) 

models always specify response probability matrices that satisfy independence and double 
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cancellation. PCM's approach is analogous to ANOVA, in that the axioms require "person" and 

"item" factors to produce additive and non-interactive effects on the response probabilities. Item 

curves (based on Pni1 across β) must be parallel with equal slopes. Item response theory (IRT) 

models that do not specify such curves cannot produce measures with invariance properties 

(Andrich 1988, 1989; Cliff 1989, 1992; Fisher 1994; Karabatsos 1999a, 1999b; Wright 1984, 

1999). Although models that allow item curves to cross (Hambleton & Swaminathan 1985) may 

be appealing for their accommodation of inconsistent data, the very fact that their structure 

contradicts the three basic measurement requirements renders goodness-of-fit analysis irrelevant 

(Karabatsos 1999a). One class of these models takes the formulation αi (βn - δi), where αi is the 

slope of the item characteristic curve at βn = δi  (Hambleton & Swaminathan 1985). Such item 

"weighting" violates independence by distorting the conjoint order of response probabilities (e.g., 

Table 2). These models thus inherently entail sample-and test-dependent measurement. 

 The degree to which measurement objectivity is attained depends on how well data 

accord with the measurement principles specified in a PCM model. The standardized response 

residual represents the basis for all item and person fit statistics: 

Z x E Wni ni ni ni= −( )2                 (5) 

where Xni is the observed response, and Eni is the expected response, and Wni is the variance of 

the expected response. For dichotomous responses, Eni = Pni1 and Wni = Pni1(Pni0). Zni is expected 

to approximate a N(0,1) distribution. The fit of person and item response sets is calculated using 

mean-square statistics (MS), which have an expectation of 1. Outfit mean-square (OMS) is the 

average Z2 across responses: 

OMS Zni= ∑ ∑2 1            (6) 

a statistic very sensitive to extreme unexpected responses, i.e., when βn >> δi or βn << δi . Infit  
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mean-square is more sensitive to unexpected responses for close βn and δi distances: 

IMS W Z Wni ni ni= ∑ ∑2            (7)  

In common practice, MS>1.3 diagnoses an item or person with inconsistent responses; MS<.7 

signals overfit, an improbable degree of consistency. Type I error rates for MS statistics are 

available using the null hypothesis of data-model fit (Smith 1988, 1991; Smith, et al. 1998). 

 Misfitting items and persons are usually set aside for subsequent analyses, since such data 

distort the transitivity among person ($) measures and item calibrations (*). This step in the 

calibration of a measurement system has been controversial (Goldstein & Blinkhorn 1977; 

Goldstein 1979; Gustafsson 1980; Phillips 1986; Smith 1986), largely because its focus on the 

validity of the construct goes against the grain of traditional true-score measurement theory, 

which places higher value on content validity (Fisher 1994; Cherryholmes 1988; Messick 1975). 

Because data are commonly deemed valid on the basis of a test or survey’s content, the standard 

paradigm has been to fit models to data, rejecting the model when it does not fit the data. From 

within this paradigm, changing the data, or the way in which observations are made, in order to 

obtain model fit has been viewed as an artificially contrived and unethical tampering necessarily 

unacceptable in scientific work. 

But when data are too inconsistent to calibrate a ruler, the researcher should not give up 

and make do with data that will not support scientific generalization, which is what is often 

currently recommended (van der Linden & Hambleton 1997). When data must be removed from 

the process of calibrating an instrument, the item or person involved is not simply deleted. 

Rather, the characteristics of that item or person are examined for reasons why the measurement 

effort failed (Wright 1977b, 1999; Wright & Stone 1979; Woodcock 1999). Is the item 

ambiguously phrased, or does it offer more than one interpretation? Does the item perhaps 
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belong to a different construct that ought to be measured with its own instrument? Was there a 

data entry error? Was this person mistakenly sampled from a different population, as might be 

inferred from particular response patterns shared by an identifiable subsample that shares a 

consistency different from the rest of the sample? Did the respondent mistakenly reverse the 

rating scale options? Far from being a mindless trashing of data, explanations of these kinds open 

the door to improving the quality of the data and the precision and accuracy of the measuring 

instrument.  

 The degree to which measurement objectivity is attained is also a function of 

measurement reliability. As a part of model fit optimization, it is also useful to evaluate how well 

item calibrations discriminate among the measured persons, and vice-versa, using separation (G) 

statistics (Wright & Masters 1982). The person separation (Gn) ratio describes the number of 

performance levels that the test distinguishes in the sample of respondents; the item separation 

(Gi) ratio indicates how well items spread along the variable. G is calculated by: 

   G = ASD / RMSE            (8) 

where RMSE (root mean square error) is the error variance of the measures, and ASD is the 

standard deviation of the measures adjusted for RMSE, or 

     ASD2  = SD2 - RMSE2 .           (9) 

The relationships between the Kuder-Richardson reliability statistic (R) and separation is  

   R = G2 / (1+G2)  G = [ R / (1 - R) ]1/2 .         (10) 

In principle, either R or G can be used. G is more descriptive, since 1) every unit increase 

represents an equal increment of change in the ratio of variation to error, and 2) G has an infinite 

range, 0 < G < +∞, while the range of R is constrained in [0,1]. 
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HYPOTHESES 
 
1 The first hypothesis tests whether the data support the contention that the quality of care 

variable is quantitative (Michell 1990). The quantitative hypothesis will be rejected or 

provisionally confirmed via tests of model fit, the extent to which the data satisfy the 

requirements of independence and double cancellation (Luce & Tukey 1964; Krantz, et 

al. 1971; Michell 1990, 1997), as implemented in a probabilistic conjoint measurement 

(PCM) model (Brogden 1977; Perline, et al. 1979; Wright 1985, 1997). Experimental 

procedures for maximizing model fit will be demonstrated in detail. 

2 Provided satisfactory model fit is established, then the hypothesis that meaningful 

substantive relations are associated with hypothesis 1’s quantitative structure can be 

tested. The fundamental issue of interest is construct validity. The empirical item order 

on the scale is examined in order to answer the question, “Do the data arrange the MEPS 

QOC item estimates reasonably and meaningfully, so that services with low calibrations 

are easy to be satisfied with, services with high calibrations are difficult to be satisfied 

with, and persons with low measures are less satisfied than those with high measures?”  

3 Following the investigation of construct validity, the person measures and item 

calibrations will be checked for robustness via analyses of randomized and 

demographically defined sub-samples of the data. The hypotheses tested will require that 

person measures be the same (linearly convertible, with at least a .85 correlation) no 

matter which particular items are used to produce them, and that the item calibrations 

remain the same no matter which particular persons respond to them. Item calibration 

robustness will establish that very large samples are not needed for many measurement 

and scale development tasks, and that item difficulty order and the substantive meaning 

of the measures can be interpreted as generally characteristic of the population. Person 
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measurement robustness will demonstrate that 1) missing data can be accommodated, 2) 

measurement technology can be adapted to the needs of the respondent, instead of 

requiring respondents to adapt to the needs of the technology (Choppin 1968; Lunz, 

Bergstrom & Gershon 1994), and 3) different instruments measuring the same variable 

could be equated to measure in a single reference-standard quantitative metric (Fisher 

1997a, 1997b, 1998, 2000a). If broadly realized in health services research, robust 

measures could greatly improve the efficiency and meaningfulness of that research, as 

well as its implementation. 

4 Fourth, as an elementary demonstration of the use of PCM logits in a statistical analysis, 

the QOC measures are studied submitted to an analysis of variance to test an hypothesis 

concerning variation in amounts of QOC across public and private HMOs, and Medicare. 

Do persons paying more for their health care experience substantially higher QOC?  

5 Fifth, PCM will be evaluated relative to summated ratings and IRT analyses of the same 

MEPS QOC data. PCM, IRT, and the summated ratings approach are all often used in 

practice as though they produce interval measures; this study will evaluate the extent to 

which the results of each actually meet the long-established requirements for fundamental 

measurement applications in science and commerce, as articulated by Campbell (1920), 

Fisher (1922), Guttman (1950), Rasch (1960), Luce and Tukey (1964), (Suppes, Krantz, 

Luce & Tversky (1989), and others, as summarized by Michell (Michell 1990, 1999, 

2000) and Wright (Wright 1999). 

 14



SURVEY RESPONDENTS AND INSTRUMENT 

 A PCM model was applied to data from 23,767 families who responded to the Medical 

Expenditure Panel Survey (MEPS), conducted by the Agency for Healthcare Research and 

Quality (AHRQ; formerly the Agency for Health Care Policy and Research (AHCPR)) (Cohen, 

et al. 1996-97). The dataset (HC-002) used in these analyses was downloaded from the AHRQ 

website in 1998. The analysis focused on 11 survey items pertaining to quality of care (QOC), 

listed below (item response options are shown in parentheses). Earlier questions in the interview 

establish the identity of the persons obtaining care from a particular provider. The provider’s 

name is then used in the following questions, and pronouns (they, them) refer to the persons 

seeking care. 

1. [AC17] How difficult is it to get appointments with your provider on short notice, for 

example, within one or two days? (Very / Somewhat / Not too / Not at all Difficult) 

2. [AC18] If they arrive on time for an appointment, about how long do they usually have to 

wait before seeing a medical person? (>2 hrs./1-2 hrs./31-59 mins./16-30 mins./5-15 

mins./<5 min.) 

3. [AC19] How difficult is it to contact a medical person at your provider over the telephone 

about a health problem? (Very / Somewhat / Not too / Not at all Difficult) 

4. [AC19A] Does your provider generally listen to them and give them the information needed 

about health and health care? (No/Yes) 

5. [AC19b] Does the provider usually ask about prescription medications and treatments other 

doctors may give them? (No/Yes) 

6. [AC19C] Are they confident in the provider's ability to help them when they have a medical 

problem? (No/Yes) 
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7. [AC19D] How satisfied are they with the professional staff at the providers’ office? (Not at 

all / Not too / Somewhat / Very Satisfied) 

8. [AC19E] Overall, how satisfied are they with the quality of care received from the provider? 

(Not at all / Not too / Somewhat / Very Satisfied) 

9. [AC24] During the last year, did any family member not receive a doctor’s care or 

prescription medications because the family needed the money to buy food, clothing, or pay 

for housing? (Yes/No) 

10. [AC24A] Overall, how satisfied are you that members of your family can get health care if 

they need it? (Not at all / Not too / Somewhat / Very Satisfied) 

11. [AC25] In the last 12 months, did anyone in the family experience difficulty in obtaining 

care, delay obtaining care, or not receive health care they thought they needed due to any of the 

reasons listed on this card [list of 18 reasons shown to respondent]? (Yes/No) 

In the original AHRQ documentation, these items are included in the Access to Care (AC) 

section of the household survey. With each question, respondents were given the opportunity to 

say they did not have an answer. Note that the set of items employ four different groups of rating 

categories, three of which use rating scale options. Therefore, for this experimental design, it is 

necessary to employ a different PCM model for each rating scale, which can be expressed as: 

( )λ βni j j k nijk ni j k n i jkn P P( , ) ( )− −= = −1 1 δ τ−
         (11) 

where τ is the response threshold between response category j and j-1, k is the rating category 

group (k={1,2,3,4}), and λni(j,j-1)k is the log-odds of response category j being chosen versus 

category j−1. 

 It is also important to notice that the rating scales differ in the direction they point. The 

original coding of item 1 above, for instance, assigned a rating of 1 to very difficult, indicating 
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low QOC, and a 4 to not at all difficult, indicating high QOC. With the very next question in the 

interview, however, the direction of the coding is reversed, such that waiting times of less than 

five minutes are rated as 1, and waits of more than two hours, 6.  

 In order to evaluate the capacity of the ordinal observations to support interval 

measurement, the ratings need to consistently point in the same direction, so that any rating in a 

higher category always indicates more QOC. The data were therefore recoded so that a high sum 

of ratings for a respondent would indicate the overall high QOC associated with a high measure, 

and a high sum of ratings for an item would indicate that it represents the relatively low QOC 

hurdle that calibrates toward the bottom of the scale. The order of the codings as they were 

employed in the analyses is shown in the listing of the items above. 

 Accordingly, scoring the one 6-point item (2), the five 4-point items (1, 3, 7, 8, and 10), 

and the five dichotomous items (4, 5, 6, 9, and 11) as consecutive integers, 1-6, 1-4, and 1-2, 

respectively, results in a minimum possible score of 11, and a maximum possible score of 36, 

given complete data (responses to all items). 

 

RESULTS 

The following results are provided by the PCM program WINSTEPS (Wright & Linacre 

1999). Table 3 shows the summary statistics for the 23,767 cases, of which 208 lacked 

responses, 3,383 obtained the maximum score of 36, and 165 obtained the minimum score of 11, 

leaving 20,011 analyzable cases. Persons and items with maximum and minimum scores are not 

analyzable because they provide no information as to their position on the scale, being, in effect, 

shorter than the first unit on the ruler, or taller than the last unit. 
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 The top part of Table 3 provides a global summary of person (top) and item (bottom) 

statistics. The item scale is centered at zero (refer to the mean ITEM MEASURE). The average 

person measure of 2.08 is therefore over two errors (0.85) above the center of the scale, 

indicating that, relative to the administered items, the sample receives high QOC. The average 

REAL ERROR for the persons is .85, and is .02 for the items. The small item calibration error is 

due to the large sample size. As the number of measures increases and the unit of measurement is 

successfully repeated, error decreases, variation remains constant or increases, and reliability 

increases. 

 

Hypothesis 1: The Quality of Care variable is quantitative 

 The first hypothesis is not rejected. As shown in Table 3, on average, the person and item 

fit statistics are satisfactory, although the variance and range of the mean-square statistics 

indicate that there are some persons with unexpected responses. In general, however, the 

independence and double cancellation axioms are not violated. As is described in greater detail 

under Hypothesis 3a, below, a series of experiments were conducted in order to determine the 

instrument’s optimal characteristics.  

In these experiments, model fit was not markedly improved, since it was satisfactory at 

the start. Modeled reliability was improved from .65 to .82, but this seems to have been inflated 

by the appearance of a nearly 3-logit gap in the middle of the item calibration distribution. The 

effect of the gap in the item calibrations on the respondent measures would be to increase 

variation without simultaneously increasing error; hence the increase in reliability. A less 

extreme removal of inconsistent observations resulted in no change in reliability, equivalent 

model fit, and improved construct definition, as presented below. 
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Hypothesis 2: The Quality of Care items and rating categories fall in a meaningful order and 

position relative to the measures 

This hypothesis is taken up under the subheadings of the overall item hierarchy, the 

instrument targeting, and the rating scale step hierarchy. 

The Item Hierarchy. The second hypothesis is not rejected. Figure 2 provides important 

information about the QOC construct. The positions of the measures and calibrations in this 

figure are taken from the first analysis of all measurable 20,011 cases. After these are described, 

they are compared with the results of the optimized analysis. 

The item at the bottom of Figure 2’s variable map involves the provider’s ability to listen 

to the patient and provide relevant information. Immediately above this item are two others 

involving the family’s ability to obtain care, and confidence in the provider. These issues 

constitute the overriding purposes of the encounter, so it seems of some theoretical importance 

that the measurement of QOC would start here.  

At the other end of the scale, at the top of Figure 2, are items concerning waiting time, 

phone access, and making appointments. Respondents are least likely to rate these items in high 

categories, suggesting that only the highest quality care providers will receive positive responses 

in these areas. It is of some interest to note that the items are distinguished along the 

measurement continuum by general and specific expressions of QOC. With the exception of the 

easiest item, the bottom seven items are relatively abstract, while the top four involve specific 

services provided. This contrast should prove of theoretical value in the development of 

improved QOC instruments. 
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Since a higher person measure indicates higher QOC, the probability of satisfaction 

decreases as item calibrations increase. To illustrate, hypothetical responses from fictional 

people named “Tom,” “Mary,” and “Cindy” were inserted into Figure 2. Mary’s position on the 

QOC variable (above 6) indicates that she is likely to be satisfied with or agreeable relative to all 

the items. Cindy’s position (at about –2) on the variable indicates that she is not likely to be 

satisfied with any of the items. Tom’s position (≈0) indicates that he is likely to be very satisfied 

with or agreeable relative to items 4, 6, and 9, not satisfied with 2, 3, 1, and 5, with about a .50 

probability that he is satisfied with 10, 7, 11, and 8. 

 When all items fit a PCM model, and are ordered in a meaningful hierarchy, they all 

measure the same variable. Failures of invariance are invitations to investigate construct validity, 

with the aim of better understanding and improving the item hierarchy. The MEPS QOC items 2 

and 5 provoke responses that are less consistent (MS > 1.2) than the other items’ responses. The 

other items involve issues that are crucial components of QOC, addressing basic issues of access, 

provider skill, and information availability. In contrast, responses to questions concerning 

appointment waiting time (item 2), and whether the provider asks about other treatments (item 

5), do not vary with the same consistency as the other items in the scale. From the perspective of 

item fit, the MS statistics suggest that these two items are not consistent components of the 

unidimensional QOC construct, and should therefore be set aside for subsequent analyses.  

 These two items should not automatically be considered ineffective, and mechanically 

deleted from further consideration. They might 1) be inordinately affected by only a very few 

especially unexpected responses from persons with extremely high or extremely low measures; 

2) be useful for measuring a different unidimensional aspect of QOC; or 3) signal the existence 

of a special respondent subsample especially interested or uninterested in these aspects of QOC. 

 20



Perhaps the item "Provider asks about other treatments" is relatively more important for a group 

of respondents who have particular conditions with well-known alternative treatments, or for 

persons with multiple co-morbidities who may be at risk for medication interactions.  

And it may be impossible for certain high-QOC patients to have short waiting times in 

the particular clinics they visit. It could be that these clinics are crowded because of the high 

quality care they deliver. No matter whether response inconsistencies occur as systematic 

functions of persons or items, further investigation of the standardized residuals (as calculated in 

equation 5) is warranted. Factor analysis of the standardized residuals appears to be an approach 

that is useful for detailed construct investigations (Wright & Linacre 1999; Linacre 1998). 

An alternative to setting aside noisy persons/items is the removal of individual responses 

(single person-item interactions) with high residuals. This is possible since the probabilistic 

properties of PCM models enable the handling of missing data with little or no consequence to 

person and item measurements, even though greater numbers of missing responses necessarily 

increase the error of measurement. Employing this strategy on these data caused the removal of 

all responses in the most positive category of the most difficult item, involving waits of less than 

five minutes to see the doctor at appointments. Responses in this extremely positive category 

were so improbable that they were inherently inconsistent with all other responses. Removing 

them then caused the item to become less difficult and its relative position shifted from the top of 

the hierarchy to fourth from the top. In addition, the spread of the other items on the variable 

increased from about 3 logits to over 7 logits. Almost all of that change, however, was 

introduced in the form of a gap between the top four and bottom seven items, suggesting that the 

elimination of the waiting time and other treatment inconsistencies set the stage for a clearer 

 21



expression of the difference between the more agreeable, general aspects of the construct at the 

bottom of the scale, and the less agreeable, specific aspects at the top. 

The advantage of removing individual inconsistent responses is that the analyst is able to 

retain as much information as possible from the data set, without the unreasonable dependence 

on complete person-response sets. For most other approaches to measurement, a missing 

response leads to the deletion of a person or item from the analysis, or the application of some 

test-dependent scoring algorithm to replace the missing response(s) (Bernhard, et al. 1998; Hahn, 

Webster, Cella & Fairclough 1998; Troxel, Fairclough, Curran & Hahn 1998). Within the PCM 

framework, if it is of concern that missing responses occurred as a function of non-random 

factors, then the item calibrations can be compared across respondent groups exhibiting different 

amounts or types of missing responses, in order to detect item bias. 

The person-item variable map is considered from a different perspective in Figure 3, 

which shows the expected responses across all of the items for individual measures. The 

distribution of all measures is shown at the bottom of the figure, with the number of measures at 

each point along the logit ruler indicated by the vertical columns of numbers. There are, for 

instance, 2,004 measures at the mean (about 2.1 logits), indicated by the M at the bottom of the 

figure (S indicates one SD; T, two). 

To take a specific example, Tom, who measures about 0 on the QOC scale, is expected to 

have a response string, listed in item difficulty order (from the bottom up), of 22232331222 

(Tom’s expected responses are underlined in Figure 3). Mary, who experiences higher QOC and 

a measure of about 4, is expected to respond 2224442445 (Mary’s expected responses are 

circled.) The various patterns of responses associated with each possible score-measure 

combination constitute the modeled expectations against which observations are compared.  
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Because the modeled expectations of consistent variation embody the criteria of 

sufficiency, Guttman reproducibility, conjoint additivity, and parameter separation (Wright 

1999), the difference between those expectations and the observations is of primary value in the 

estimation of model fit. When any given measure is associated with a model fit statistic in a 

satisfactory range, observations and expectations conform to one another sufficiently well for the 

measure, understood as effective within a range defined by plus or minus two errors, to be 

interpreted as meaningfully approximating the ideal. 

 Accordingly, Figure 3 could be used as the basis for a redesigned assessment form. For 

instance, clinician managers could use this type of figure as an assessment form (i.e., 

KEYFORM) to measure and qualitatively assess QOC at the point of care (Connolly, Nachtman 

& Pritchett 1971; Fisher, et al. 1995a; Linacre 1997; Ludlow & Haley 1995; Ludlow, et al. 1992; 

Sparrow, Balla & Cicchetti 1984; Woodcock 1973, 1999). To obtain a patient’s QOC measure, 

the patient simply responds to the questions by circling the appropriate categories, and the 

provider then draws a line through roughly the middle of the circled responses, and refers to the 

patient’s measure (and error, raw score, percentile rank, or whatever other statistic might be 

deemed relevant and worth including) at the bottom of the form. Once the analyst has reached 

the point at which item calibrations are stable, calibrated forms can be provided to physicians, 

nurses, and other care providers as diagnostic tools. This is one method of integrating 

measurement methodology with clinical practice, making the enhanced interpretability 

established via instrument calibration immediately available at the point of care with no need for 

further time-consuming computerization and data analysis. 

Instrument Targeting. The mistargeting of items to persons is illustrated in the person-item 

variable map in Figure 2, and in Figure 3. More than 61% of the sample is likely to be satisfied 
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with every item (β>1.75), and more than 90% persons measure above the center of the item scale 

(δ=0). Given the instrument’s 36 response categories, Rasch generalizability theory (Linacre 

1993) predicts a measurement error of about .50 for an on-target sample, in contrast to the 

present sample’s .85 average error. With an average measurement error of .50 and this sample’s 

measurement standard deviation of about 1.4, one would then expect a person measurement 

separation of about 2.7 and associated reliability of .88.  

Figure 2 shows only the average step difficulty for the items. For the items with 

dichotomous, yes-no response formats, the sole step difficulty is the same as the item difficulty. 

But for the five items rated on multicategory scales, calibration estimates are obtained at each 

step transition. The construct definition and the instrument targeting are then enhanced, in this 

case only slightly, by the additional information provided by the rating scale step estimates, as 

shown in Figure 3. 

Rating Scale Step Hierarchies. Four different groups of response categories were calibrated. For 

the purposes of this demonstration, attention will be focused on the “Very Satisfied / Somewhat 

Satisfied / Not Too Satisfied / Not At All Satisfied” rating scale of items 7, 8, and 10. The 

analysis of its rating scale structure is provided in Table 4. The “Observed Count” column 

summarizes the number of responses made within each rating category, and the “Average 

Measure” column indicates the average person measures responding to each category. The 

results are satisfactory, as an increasing score on the rating scale corresponds to an increase in 

both the average measures and the category thresholds. Both MS statistics indicate that there are 

some unexpected "1" responses, which suggests that the two misfitting items contain responses 

of 1 when their expected ratings were much higher.  
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The figure at the bottom of Table 4 illustrates that the category response thresholds (Jjk) 

correspond to the locations where curves j and j-1 cross. Therefore, -.55 is the response threshold 

between categories 1 and 2, -.42 is the threshold between categories 2 and 3, and .98 is the 

threshold between categories 3 and 4, as indicated in Table 4, which means that a higher QOC 

rating contributes to higher patient QOC measure, as intended.  

Results for the remaining items’ step structures are shown in Tables 5-7 and are in 

general satisfactory. Overall, the data exhibit, item by item and step by step, the conjoint 

response pattern expected by the PCM model. But notice that each of the three rating scales 

includes one very small step, suggesting that it may be necessary to collapse adjacent ones 

together.  

Collapsing categories is recommended when (a) category responses exhibit statistically 

significant inconsistencies (MS>1.2), (b) a category has a low observed count, (c) most of the 

category’s response curve lies under an adjacent category's curve, or (d) when the size of the step 

from the previous category is less than 1.4 logits (Linacre 1999). Such an optimization of the 

rating scale usually improves fit, and will also improve separation/reliability to the extent that 

error is lowered relative to variation. In this case, an experimental recoding the data resulted in 

the elimination of statistically significant inconsistencies, and had no effect on 

separation/reliability. 

 

Hypothesis 3a: Measures are invariant across item subsamples 

 Hypothesis 3a is not rejected, but provisionally, with a strong need for improved data 

quality. The person separation statistic for the initial analysis of all 20,011 available cases 

indicates that there is about as much error variance as measurement variance (Gn=1.17), as is 
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associated with low person reliability (R=.58). In other words, the highest measure cannot be 

distinguished from the lowest measure to a statistically significant degree because the instrument 

lacks the power it needs to spread the respondents out along a number line. In order to give 

numeric expression to quantitative magnitudes, an instrument should discriminate 2+ 

measurement levels of QOC (Gn >2, Rn> .80). High stakes applications can require reliabilities 

above .95, as is required for consistent and reliable reproduction of a measure across instruments. 

 It is sometimes possible to establish an instrument’s maximum possible reliability by 

removing cases with significant inconsistencies (OMS > 1.4), or with significant amounts of 

missing data. After the instrument’s best performance is observed, the cases that had been 

removed are replaced, and measures for them are produced by anchoring the items at their 

established calibrations. If the error introduced by the inconsistencies or the missing data 

decreases relative to the variation in the measures, reliability increases.  

With the MEPS QOC data, however, iterative analyses removing ultimately 9,999 cases 

exhibiting the strongest inconsistencies had negligible effect on the measurement reliability 

coefficient. The main effect of these analyses was to remove cases with responses at the extreme 

low end of the rating scale for the item involving appointment waiting times (i.e., persons 

indicating that they had waited over two hours before seeing a doctor). This in turn caused the 

item to drift progressively lower down the scale from its original position as the most difficult 

indicator of QOC to a new position fourth from the top. In these analyses, the positions of the 

other items remained stable, but the mistargeting of the instrument was exacerbated, with the 

mean measure increasing from 2.08 to 3.18.  

 Figure 4 shows the results of a direct test of measurement invariance across item 

subsamples. These results were produced by dividing the QOC items into two groups defined by 
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the number of available response categories, and using these as separate instruments each 

measuring the QOC experienced by the entire (second, reduced) sample of respondents. The 

overall correlation between the two sets of measures is .71.  

 Further tests of this hypothesis are summarized in the correlations shown in Table 8. 

Three subsets of items, chosen based on their difficulty calibrations (low, medium, and high), 

and two mutually exclusive random sets of items, were calibrated in separate WINSTEPS 

analyses on the original data set’s 20,011 measurable cases. Correlations range from about .26 to 

.89. The lowest values are associated with comparisons of item groups that vary greatly in their 

difficulties (low vs. high), and the highest values, with groups of items that are similar in 

difficulty (middle, high, and the two random selections). 

 Overall, the low number of items available for scaling makes it difficult to obtain highly 

reliable measures. Were there more items, and had they been designed with the intention of 

establishing invariant measures in mind (i.e., taking up the recommendations of Fisher (2000b) 

and others), larger subsets of more reliable items would be available, and better able to provide 

measures in a uniform metric. To obtain the same measure using different brands or 

configurations of instruments known to measure the same thing would require that the 

correlations be higher and the associated plots would show a narrower range of variation nearer 

to the identity line. 

 

Hypothesis 3b: Calibrations are invariant across respondent subsamples 

 Hypothesis 3b is not rejected, since the item calibrations spread along the scale very well 

(Gi =51,  Ri=1.0). As a demonstration of the scale invariance over respondent subsamples, data 

from five randomly chosen (with replacement) groups of respondents, and from two other groups 
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distinguished by their measures (high and low), were used to produce seven separate sets of item 

calibration estimates. Sample sizes for the randomly selected groups were 500, 250, 100, with 

two other groups of 35. The sample sizes of the high median and low median groups were 4,915 

and 6,094, respectively. 

 Correlations for these groups of item difficulty estimates are shown in Table 9; the values 

correlated are plotted in Figure 5. Sixteen of the 21 correlations (about 80%) are greater than or 

equal to .84, and about half of them (10 of 21) are over .90. With the exception of the item at the 

far right of Figure 5, involving difficulty in receiving health care, the items calibrate in the same 

order across samples, even with sample sizes as low as 35. 

 A similar pattern and similar correlations, here averaging about .95, were produced by 

respondent subsamples defined by their participation in public or private HMOs, or in Medicare 

(see Table 10 and Figure 6). 

 

Hypothesis 4: Measures do not vary across demographic groups 

 This traditional statistical hypothesis of no difference in measures across groups is 

rejected on the basis of a significant F-test (see Table 11). In substantive measurement terms, 

however, the differences in the mean measures are very small (0.06, 0.27, and 0.33 logits), with 

all of the differences less than half the average estimated measurement error (.85 for the total 

sample). In other words, when the differences in the measures are interpreted in terms of an 

actual change in responses to the questions asked, no such change is seen as likely. 

 

Hypothesis 5: PCM, IRT, and summated ratings are each appropriate in QOC measurement 

 Though retainable in certain limited respects, overall, this hypothesis has to be 

rejected. The superior data quality assessment and interval measurement characteristics of PCM, 
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relative to IRT and summated ratings, are irrefutable. A summary of PCM, IRT, and summated 

ratings features is provided in Table 13. We will now take up a more detailed examination of 

summated ratings and IRT analyses of the MEPS QOC data. 

Summated Ratings. Reconsidering again Figure 3, we see that not only are the distances between 

adjacent categories variable, but the position of a given category on the ruler changes with the 

difficulty of the items. Figure 7 shows another view of the data shown in Table 7 for the MEPS 

QOC item 2, involving waiting time for an appointment. The distances between the step 

thresholds reported in Table 7 are shown in Figure 7 in such a way that the “foundations of 

misinference” (Merbitz, et al. 1989) on which so much research is based become graphically 

apparent. For instance, a change in waiting times that would be expressed as a shift in the 

average response from 2.5 to 3.5 raw score units corresponds with a one-logit difference on the 

measurement scale, but the same single unit shift from 4.5 to 5.5 in the expected score 

corresponds with more than three logits on the measurement scale. 

 Figures 8-10 display other ways in which the nonlinearity of ordinal scores is misleading. 

 Figure 8 plots the entire range of possible scores (11-36), given complete data, against 

their logit-linear transformations (the approximate β estimates for the minimum score 11 and the 

maximum score 36 are based on hypothetical scores of 11.3 and 35.7). The relationship takes the 

shape of an ogive since scores are always bounded by their minimum and maximum values, 

while their associated logit estimates range from -4 to +4. Figure 8 shows the consequences of 

using nonlinear raw scores for statistical inference. A 2-point difference from 21 to 23 translates 

to a 1-logit increase, but the same 2-point gain from 32 to 34 is a 2-logit increase. Hence, the 

score difference between 32 and 34 is quantitatively twice more than the apparently equal 

difference between 21 and 23.  
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The crux of Likert’s (1932) argument against Thurstone was that, with complete data, the 

middle of the score distribution is nearly additive. The problem that is especially pertinent to the 

mistargeted MEPS QOC instrument is that the natural logarithm’s two-stretch transformation of 

the score distribution causes the size of a raw score unit to vary by up to 400% on the logit 

metric (Wright 1999) depending on where that unit is positioned. That is, the difficulty of 

advancing a single score unit at the extreme ends of the measurement continuum is much more 

challenging than it is in the middle of the ruler. Raw scores from different parts of the ruler are 

almost always compared with no cognizance of this difference, so the inferences made are 

inherently flawed. 

 Figures 9 and 10 show plots of all raw scores versus their associated logit measures for 

the measures and calibrations, respectively. These figures highlight the effect of missing data on 

the raw scores. Notice that the upper edge of the points plotted in Figure 9 represents the same 

complete-data curve shown in Figure 8. The points below that upper edge represent score groups 

formed on the basis of responses to fewer than all of the available questions on the instrument. 

Although competent users of survey instruments know better than to compare raw scores 

summed from different collections of questions, this plot draws attention to the inconvenience of 

methods unable to account for missing data, and the advantages of odds ratios as a component of 

fundamental measurement theory and practice for adapting instruments to the needs of people, 

instead of forcing people to adapt to the needs of instruments. 

 Without checking the internal consistency of the data, users of the summated ratings 

approach also have no means of determining whether raw scores are sufficient statistics, or if 

important information about the variable is left embedded in interactions hidden in the data. 

Unfortunately, reliability statistics are often mistakenly interpreted as measures of internal 
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consistency (Green, Lissitz, & Mulaik 1977; Ottenbacher & Tomchek 1993), and the more 

appropriate mean square model fit statistics (Smith, Schumacker, & Bush 1998) are rarely used.  

 Table 12, taken from the WINSTEPS output, lists the MEPS QOC items provoking the 

least consistent responses. As shown in Figure 2, the items with the highest OMS (Outfit Mean 

Square) statistics, concerning items 5 (the provider’s questions about other treatments), and 2 

(appointment waiting time), calibrate in the upper half of the difficulty distribution, at 0.66 and 

1.59 logits, respectively. Two particularly unexpected responses of 1 (No) to item 5, the worst 

fitting item, stand out in Table 12. These responses come from respondents 21388 and 21387 (as 

can be seen by reading the vertical column of numbers immediately above the responses in Table 

12).  

Respondents 21388 and 21387 provided identical answers to all questions, and have the 

same measure of 3.5, IMS of 3.3, and OMS of 9.9, based on responses to all 11 items and raw 

scores of 34. Table 12 also shows that these same two persons also responded in category 6 to 

item 2, indicating that they typically wait less than five minutes to see the doctor when they 

arrive on time for an appointment. An additional inconsistency indicated in Table 12 are the 

responses of No to question 9, concerning the ability of everyone in the family to obtain needed 

care. Examination of an additional table available in the WINSTEPS output indicates that these 

are the only observations affecting these two respondents’ measures to a statistically significant 

degree. 

 Referring again to Figure 3, we see that the step threshold for category 1 (No) on item 5, 

the point along the measurement continuum where this response to this item is expected relative 

to category 2 (i.e., there is a greater than .50 probability of a No response), is at about 0.6 logits, 

with the probabilities of a negative response increasing for lower measures (to the left), and 
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decreasing for higher measures (to the right). With measures of 3.5, respondents 21388 and 

21387 are over 2.9 logits above the point on the scale where responses of No to item 5 are 

expected, so the odds of these observations occurring are more than 20 to 1 against them (see 

Wright & Stone 1979, p. 16, for a table relating logit differences to response odds and 

probabilities). 

Even more dramatic is the difference between the measures of 3.5 and the response of No 

to question 9, involving a difference of about 4.5 logits and contrary odds of more than 55 to 1. 

Similarly, Table 7 and Figure 3 show that the expected measure for respondents using category 6 

on item 2 is about 6 logits. Respondents 21388 and 21387 are then 2.5 logits below the item’s 

calibration at the step from category 5 to 6, and the odds of these responses occurring are then 

less than 1 in 10. 

 Improbable response inconsistencies become evident only in a frame of reference 

established by a theory of measurement that demands sufficient statistics, conjoint additivity, and 

parameter separation. As shown in Figure 3, measures in the range of 3 to 4 logits are not 

generally associated with responses indicating that the care provider does not ask about other 

treatments, or that not everyone in the family has access to care. Were questions such as these 

routinely asked of persons seeking care, in a touch-screen kiosk or scannable form environment 

utilizing a survey formatted so as to graphically convey the essential information (Connolly, 

Nachtman & Pritchett 1971; Woodcock 1973, 1999; Wright & Stone 1979, Chapter 8; Sparrow, 

Balla & Cicchetti 1984; Fisher, et al. 1995a; Linacre 1997; Ludlow & Haley 1995; Ludlow, et al. 

1992), response inconsistencies could be quickly identified and used as a basis for further 

investigation at the point of care, perhaps identifying and preventing errors and omissions before 

they happen. 
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 PCM model fit statistics then not only serve the purpose of flagging individuals with 

unusual interpretations of the item hierarchy, but the also identify sub-samples of respondents 

with common critical characteristics. These responses provide an example of the way in which 

PCM analysis can provide a detailed account of person-item response patterns, and can facilitate 

the investigation of random and systematic errors, possibilities not available in the summed 

ratings environment.  

 

Item Response Theory. Though there are some similarities that hold up across Item Response 

Theory and PCM (Rasch measurement), the criteria defined by fundamental measurement theory 

separates implementations of these approaches into two very different groups according to their 

application of various requirements for rigorous, meaningful quantification. Unfortunately, it is 

often nearly impossible to predict a research report’s relation to that criterion from the key words 

chosen for use in the title and abstract, with IRT or latent trait theory, for instance, sometimes 

encompassing Rasch models and conjoint measurement, and sometimes not.  

Even more troubling is the fact that the approaches’ various relative strengths and 

weaknesses are often mistakenly associated with the wrong approach, as when IRT’s need for 

large sample sizes is attributed to Rasch’s probabilistic conjoint measurement models, and when 

the parameter separation characterizing fit to one of Rasch’s models is attributed to IRT models 

(Streiner & Norman 1995; McDowell & Newell 1996; McHorney 1997; Revicki & Cella 1997), 

mistakes that are made even though the correct attributions are readily available in the IRT 

literature (Hambleton & Cook 1977; Lord 1983). Finally, even when these errors are avoided, 

there are so few models for conducting and reporting studies of these kinds that the quality of the 

work performed is widely variable, to the point that reliability statistics are left unreported 
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(Haley, McHorney & Ware 1994), and the additive, equal-interval measures resulting from a 

reported Rasch analysis are abandoned in favor of the nonlinear, ordinal raw scores in statistical 

comparisons (Whiteneck, Charlifue, Gerhart, Overholser & Richardson 1992). 

The dominant paradigm in survey research is statistical, meaning that the typical 

approach to mathematical modeling is to fit models to data, instead of vice versa (Meehl 1967; 

Guttman 1985, Michell 1986). The goal in this paradigm is to describe data with the model that 

fits best, and that is best able to account for variation in the data by adjusting for the effects of 

interactions between variable characteristics of the questions asked or of the respondents. 

Application of Item Response Theory models (Hambleton & Swaminathan 1985; van der Linden 

& Hambleton 1997) then focuses on accounting for variance by adding parameters intended to 

describe the functioning of the items, but which also sacrifice statistical sufficiency, conjoint 

additivity, and parameter separation, in the process. 

 The alternative, measurement paradigm, in contrast, is prescriptive rather than 

descriptive. It accordingly specifies models possessing the characteristics necessary for objective 

scientific inference and the calibration of quantitative constants, and fits data to these. Now, in 

this paradigm, in instances of less than optimal data-model fit, the data, not the model, are 

considered suspect (although alternative models that maintain sufficiency, additivity, etc. should 

certainly be considered).  

 It is well established that the mathematics of summated ratings and IRT parameter 

estimates make them insufficient for establishing the bases of comparison required for 

accountability and patient-centeredness in health care since their axioms limit their empirical 

possibilities to sample- and instrument-dependent results (Andrich 1988, 1989; Embretson 1996; 

Karabatsos 1999a, 1999b; Wright 1984, 1999). The phenomenon of over-parameterized models 
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is not unique to IRT, but has been recognized as a problem whenever data are described so 

precisely that their value as support for general conclusions is destroyed (Busemeyer & Wang 

2000).  

 Explanations for the continued popularity of IRT and summated ratings models may also 

extend beyond the logic of human sciences research methodologies to cultural assumptions about 

the nature of objectivity and existence (Fisher 1992b, 1994; Michell 1990, 1999, 2000). For 

instance, the IRT focus on fitting models to data may be motivated by the mistaken assumption 

that it is not possible to modify scales without making new data incommensurable with old. On 

the contrary, however, because PCM models are probabilistic they can account for missing data 

and could play a vital role in bringing continuous quality improvement methods to bear on tests 

and surveys (Wright & Stone 1979; Holm & Kavanagh 1985). This feature is in fact the basis for 

recent advances in adaptive measurement and instrument equating (Lunz, Bergstrom, & Gershon 

1994; Wolfe 2000). The following analyses are undertaken in the hope that some may be swayed 

by empirical comparisons of the PCM and IRT methods. 

 Among the most well known IRT models are the 2-parameter logistic (2PL) and the 3-

parameter logistic (3PL) (Birnbaum 1968; Hambleton 1983; Hambleton & Swaminathan 1985; 

Hulin, et al. 1983; Lord & Novick 1968; Lord 1980; van der Linden & Hambleton 1997). 

Limiting attention to dichotomous outcomes, 2PL specifies that the probability of person n 

responding positively to item i is governed by 

   Pr[ xni =1 | $n, *i , "i ] ≡ e["i ($n - *i )] / (ni        (12) 

where "i is a second item parameter denoting the discrimination index of item i, and (ni = 1 + 

e["i ($n - *i )]. The inclusion of the discrimination parameter is motivated by the idea that some 
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items discriminate between lower and higher ability groups more effectively than others. 3PL 

includes the pseudo-chance parameter (0i) of item i,  

  Pr[ xni =1 | $n, *i , "i, 0i ] ≡ 0i + (1 - 0i)[e["i ($n - *i )] / (ni]       (13) 

Here, 0i is an adjustment for low ability persons improbably obtaining correct responses to 

difficult items.  

 One source of misunderstanding comes from the argument that the Rasch PCM models are 

a “special case” of 2PL and 3PL models. The logic of this argument follows from the fact that, 

when there are no surprising responses (0i = 0), and all items have equal discrimination ("= 1), 

2PL and 3PL mathematically reduce to a Rasch PCM model. From this perspective, 2PL and 

3PL are seen as offering more explanatory power than PCM models, because 2PL and 3PL do 

not rest on the “restrictive” assertion that all items have the same discrimination, and that 

guessing is minimal (Hambleton & Swaminathan 1985).  

 PCM advocates, however, show that 2PL and 3PL estimates are not based on sufficient 

statistics, and that the discrimination parameter cannot be estimated independently of the person 

parameter (Smith 1992; Wright 1977a, 1984, 1999). As a result, 2PL/3PL estimates will often 

not converge (Stocking 1989; Hambleton & Cook 1977), which requires an upper limit to be 

imposed on " (to prevent it from approaching infinity), and the assumption that $n is a normally-

distributed random variable. Furthermore, values of the discrimination parameters are 

symptomatic of item bias against different examinees (Masters 1986), which means that bias can 

go undetected within this framework. In addition, 2PL and 3PL demand very large samples of 

persons and many test items (Hambleton 1983; Lord 1983), and even then, there is doubt as to 

the accurate estimation of the pseudo-chance parameter (Hulin, et al. 1983). 
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 These problems, however, are overlooked by many 2PL and 3PL practitioners. In fact, the 

design of these models to fit problematic data is seen as an advantage over PCM models by IRT: 

 A controversial aspect of analyzing test items for model fit has always been 

whether the case of a misfitting item should lead to removal of the item from the test or to a 

relaxation of the model. In principle [according to IRT], both strategies are possible....a 

relaxation of the Rasch [PCM] model is available in the form of the two-and three-

parameter logistic models, which may better fit problematic items (van der Linden & 

Hambleton 1997, p. 12). 

From the perspective of the rigorous axioms of ACM theory, however, to “relax” the 

requirements of measurement to “better fit problematic items” amounts to giving up the 

measurement effort. Preliminary results (Karabatsos 1999a, 1999b) show that the probability 

values estimated by 2PL and 3PL cannot possibly satisfy either independence or double 

cancellation, from which it follows that 2PL and 3PL cannot construct interval or ratio scale 

measurement. This is because the presence of " or 0 within the models severely distorts the 

scalability of persons and items. These findings confirm Cliff’s (Cliff 1992, p. 188) hypothesis: 

 I have argued (Cliff 1989) that the 3-PL model cannot define interval scales of 

ability because the model itself contradicts the order-consistency principle [independence]. 

The presence of the discrimination parameter means that item difficulty order changes with 

ability; the probability of a correct response is not in the same order for all persons. Thus, 

order consistency is contradicted, so interval scaling is not possible. Such a difficulty does 

not arise if there is only one item parameter (Roskam & Jansen 1984), leading to the Rasch 

[PCM] model. 
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Furthermore, IRT models cannot provide instrument-free measurement because they incorporate 

parameters, intended to describe item functioning, that “destroy the possibility of explicit 

invariance of the estimates” (Andrich 1988, p. 67). Or, as another researcher (Wood 1978, p. 31) 

has put it, "I am persuaded by Lumsden (Lumsden 1978) that two- and three-parameter models 

are not the answer - test scaling models are self-contradictory if they assert both 

unidimensionality and different slopes for the item characteristic curves,” meaning that scale-

dependencies can and do remain in data fitting IRT models with two or three item parameters. 

 Table 13 facilitates detailed comparison of specific features of PCM, IRT, and summated 

ratings analyses as typically performed using available software. 

 Comparison of the PCM and IRT approaches to measurement began by attempting to 

establish the extent to which 1PL IRT models produce measures equivalent to those produced by 

PCM. From there, more than 25 additional IRT models involving various numbers and 

combinations of item parameters, constraints, estimation methods, and MEPS item groupings 

were specified and the parameters estimated. All IRT results were obtained using the 

MULTILOG program (Thissen 1991). All analyses were of the 23,767 available MEPS QOC 

cases, less the 208 with no data, meaning that 23,559 cases were actually in use for most 

analyses. 

 Figure 11 shows a slightly curved, but narrow and nearly linear, relationship between 

measures made using the WINSTEPS PCM software, and those made fitting a 1PL IRT model 

(Samejima’s Graded Response model) using MULTILOG. For the 1PL model, discrimination 

was held constant at 1.0, and the guessing parameter was not estimated. The PCM measures have 

a wider distribution, and the measures are not on the identity line, but the correlation is very high 

(.96). 
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 Figure 12 shows a similar comparison, but in this case the MULTILOG analysis had the 

item difficulty estimates anchored at the WINSTEPS values. With this extra information in hand, 

MULTILOG was able to effect a near-perfect repetition of the WINSTEPS measures, though the 

correlation remains the same as it was for the first comparison (.96). 

Figure 13 shows the results obtained when the 1PL model’s discrimination was set to 1.8 

for all items, employing the average discrimination actually obtained across the items. In this 

comparison, the variation in discrimination shows an effect on the measures, with a looping 

deviation in the distribution accentuating a smaller and less noticeable similar shift that was 

present in the first comparison (Figure 11). Again, the correlation between the two groups of 

measures is quite high (about .95). 

 Additional comparisons included a plot of the MULTILOG and WINSTEPS estimates 

for the individual step transition parameters of a partial credit model. The 24 steps included in 

the analysis correlated .83 (p<.01). 

 Because MULTILOG can estimate 2PL and 3PL parameters only for dichotomous data, 

data from the six multicategory MEPS QOC items were recoded. Figure 14 shows again that the 

two programs produce very similar results in the context of the IRT 1PL model, with a virtual 

1.0 correlation between the item calibration estimates. The estimates are not on the identity line, 

but are parallel to it, because of differences in the way the two programs center the scale. 

 Figure 15 shows a comparison of the measures made by the two programs on the 

dichotomous data. Though the 1PL measures fall in a 4-logit range, and the PCM measures in a 

nearly 10-logit range, the two sets of measures in general fall together along a very narrow line. 

The measures made using the WINSTEPS and MULTILOG 1PL dichotomous and mixed 

models were generally consistent with themselves and each other, with high correlations.  
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 Figure 16 shows the item calibrations from WINSTEPS plotted against 2PL MULTILOG 

estimates. Note that the introduction of the discrimination parameter has affected the difficulty 

estimates of five items in the lower left corner of the plot to the point that these five items have 

nearly reversed their difficulty order. These are the five items that were originally formatted as 

dichotomies. It may not be surprising to find that the discriminations for these five questions are 

different from those of the rating scale items, but the question that has to be answered is whether 

it is ultimately more productive to incorporate the variation in data consistency in the item 

difficulty estimates, or to require a single consistency and pursue deviations from expectation by 

means of residuals analyses and fit statistics. 

 Figure 17 shows the calibrations from WINSTEPS plotted against 3PL MULTILOG item 

difficulty estimates. Allowing the difficulty estimates to be affected by unexpected extreme 

responses has reversed even more the direction of the five originally dichotomous items than was 

the case in the 2PL analysis.  

 Figure 18 shows the measures from the WINSTEPS and 2PL MULTILOG analyses. In 

contrast with Figure 15’s comparisons involving the measures made using a 1PL IRT model, this 

plot shows that significant additional variation in the measures has been introduced by the 2PL 

discrimination parameter.  

Figures 19 and 20 plot the 3PL measures against the WINSTEPS PCM and the 2PL 

measures, showing that additional nonlinearities are introduced by the addition of the third item 

parameter. Both figures show a floor effect evident in the 3PL measures, and Figure 20’s plot of 

the 3PL and 2PL measures shows a horizontal line crossing the middle of the rest of the 

distribution, apparently evidence of an inordinate adjustment made to the measures that include 

the inconsistent responses to items 5 and 2, noted in the model fit analysis above. 
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The problem of knowing which item difficulty order is the right one in the context of 

IRT’s multiple item parameters is aggravated by the fact that the discriminations, and so also the 

item difficulty and person measurement orders, do not remain constant across models or data 

input methods. Figure 21 is a plot of the discrimination values obtained for the MEPS QOC 

items when different data input methods were used with the same 3PL model, and Figure 22 is a 

plot of the discrimination values obtained by the 2PL and 3PL models when the same data input 

method was used. In both instances, discriminations vary markedly; by necessity, so then also 

will the associated item difficulty estimates vary accordingly.  

 

RECOMMENDATIONS FOR MEPS QOC INSTRUMENT IMPROVEMENT 

 Instruments should be designed so as to produce internally consistent data with a high 

ratio of variation to error (Fisher 2000b). In general, these features are easier to achieve if: 

• the items each address a single concept, and so do not involve dependent (if-then) 

clauses or conjunctions (and, or, but), since these introduce multiple concepts that cannot 

later be disentangled from the data; 

• the items all share a common response structure, since  

o respondents can be confused by frequent changes in the available categories; and 

o effective variation in the responses is easier to plan in this framework; 

• the needed reliability is determined in advance, and the number of items and response 

categories included in the survey are chosen so as to provide that reliability or better, 

according to the well-known mathematical relationship between variation and error 

(Linacre 1993); and 
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• if items are intentionally written so as to provoke even respondents with very high or 

very low measures to use all of the available response options. 

All of these recommendations are relevant to the measurement of QOC as achieved by the 

MEPS. The MEPS has particular problems with targeting and reliability, problems that could be 

effectively addressed by rethinking the questions asked in light of these analyses, analyses of 

similar instruments (Fisher & Karabatsos 2000a, b; Karabatsos & Fisher 2000), and PCM theory. 

 

DISCUSSION 

Though the MEPS QOC items generally fit the PCM model, their calibrations need to 

better target the sample, as is indicated in Figure 2 and by the low person separation/reliability. 

This "negative" result does not mean that the measurement effort should be abandoned. Rather, 

the information provided by this analysis should be used to improve the instrument. For instance, 

additional difficult items, representing higher degrees of QOC, should be constructed, for the top 

of the measurement range. Such items would enable the survey to better target the sample, 

increasing person separation reliability and reducing opportunities for wildly inconsistent 

responses by lessening the overall difference between the measures and calibrations.  

The theoretically achievable reliability of .88 should be attainable with no increase in the 

number of items or survey categories. All items calibrating at levels lower than one standard 

deviation below the mean of the person measures should be dropped or modified such that an 

equal number of items that calibrate at levels above the mean of the person measures are created. 

The desired effect might be achieved simply by rephrasing existing questions or by adding more 

response options, such as “Extremely Satisfied”, with the aim of making it more difficult for 

respondents to employ the most positive category. 

The summed ratings method fails to extract most of the relevant and useful information 

available in the rating scale data. Raw scores misdirect inference on the supposition that the 
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ordinal scores can be safely treated as interval. They are also unable to tolerate missing data, 

which puts out of reach practical advantages such as instrument equating, adaptive 

administration, and the mediation of population-based construct differences.  

The most important point relevant to the summated ratings method is that the arithmetic 

logic of most statistical comparisons of sum scores requires that the intervals between rating 

categories be evenly spaced. Surveys are often designed to suggest as much in the way they are 

printed so as to represent the inter-category intervals as equally spaced. But the summing of 

scores into a total has repeatedly been shown to be meaningful only when the numbers added up 

represent something that exhibits a consistent structural magnitude (Fisher 1922; Thurstone 

1926, 1928; Guttman 1985; Wilson 1971; Andersen 1977; Cliff 1982, 1989; Wright 1985, 1999; 

Mundy 1986; Michell 1986, 1990, 1997, 1999; Merbitz, et al. 1989).  

 It may, of course, be impossible to design rating scales capable of performing so as to 

exhibit the needed additive properties without additional treatments, primarily involving the 

application of the natural logarithm to the distribution-free transformation of the raw scores into 

odds ratios (Rasch 1960; Andersen 1977; Wright 1977b, 1985, 1999). Maor (1994) documents 

the many different aspects of mathematics that the number e, on which the natural logarithm is 

based, ties together: the law of compound interest in finance, the spirals of snail shells and 

galaxies, equal-tempered musical scales, the area under a hyperbola, the Weber-Fechner 

psychophysical law of perception, and the golden ratio exhibited in the structural proportions of 

leaf patterns, the human body, and classic art. We should not be surprised to find that the number 

e and the natural logarithm appear again in the structures of survey-based measurement 

variables. 

 The comparisons of item and respondent subsample scalings reported under the headings 

of hypotheses 3 and 4 present the rarely appreciated point that high reliability is not desirable for 
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purely theoretical reasons, but for the pragmatic end of providing reproducible measures. Two 

instruments measuring the same thing will produce the same measure for the same amount of the 

variable only within the range of error (i.e., to the extent that their measurement precision 

(reliability) allows for it). When a low number of poorly designed items taken altogether 

measure with a reliability below .70, as do the MEPS QOC items, and these are then divided into 

two groups that measure with even lower reliabilities, low correlations (.50 - .70) between the 

resulting sets of measures is to be expected. 

When, in contrast, highly reliable calibrations of .94 to .96 are obtained for two different 

instruments measuring the same thing, it can be expected that the measures produced will be 

quite stable, and will correlate highly. The value of the Rasch separation reliability statistic 

(Wright & Masters 1982) becomes apparent in this context. For a reliability of about .80 and 

separation of 2.0, subsample comparison studies can be expected to produce correlations of 

about .75 to .80, since, as the separation statistic indicates, the relationship of variation to error in 

the measures causes the measures to vary within the bounds defined by two groups, one high and 

one low. The two groups lie like oblong, slightly overlapping ellipses, end-to-end with one 

another on the measurement continuum, with centers 4 errors apart. The large amount of error 

relative to the variation in the measures means that treatment effects would have to be very large 

to be detectable. Even in the context of relatively imprecise measurement, it remains nonetheless 

true that, as long as there is more variation than error (and separation is greater than 2), measures 

from different instruments experimentally established as measuring the same thing will fall 

within four errors of each other more than 99% of the time. 

But consider now a different situation involving two instruments addressing the same 

construct, and with measurement reliabilities of .97 and separations of 6. These instruments 

define six overlapping ellipses with centers 4 errors apart spread along the ruler. Just as was the 

case with the lower reliability, more imprecise instruments, a measure made with one of the 
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highly precise instruments can be expected to fall within four errors of a measure of the same 

amount from the other instrument better than 99% of the time. The advantage gained from the 

greater precision is not only that different instruments provide more nearly the same measures 

for the same amounts, but that the same numerical difference in imprecise and precise 

measurement contexts will be more interpretable in the precision context, since there will be 

more items articulating the substantive meaning of the score differences all along the 

measurement continuum. Thus the power to make highly reliable quantitative distinctions not 

only makes the detection of faint effect sizes much more likely, but it also makes them more 

meaningful, since the presence of multiple items provoking the score differences provide a 

language and theory of the variable. 

But when results are as uncontrolled as those found in the application of the 

multiparameter IRT models, where are criteria for knowing which difficulty order is right to 

come from? The only place they can come from is from the identification of constant, additive 

relationships capable of supporting generalizable comparisons. In actual practice, multiparameter 

IRT estimation procedures require the estimation of a PCM model every other iteration in order 

to prevent the estimates from diverging to infinity (Stocking 1989). And when instruments have 

to be equated so that measures can be compared, it is again PCM, in effect, that is put to use, 

since the need for stable estimates across samples is the well-accepted point of equating. If we 

are then to engineer quantitative measures of QOC, functional status, quality of life, or other 

variables that effect what Roche (1998) calls the full integration of measurement and 

mathematics in scale-free metrics, there would seem to be no point in employing analytic 

methods and theories like IRT and summated ratings that do not efficiently facilitate the 

realization of that goal. 
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Both the history of measurement science (Heilbron 1993, Roche 1998) and 

developmental psychology (Bergling 1999; Dawson 2000) show that understanding evolves over 

time through interaction with objects. Interactions with the things themselves provoke qualitative 

cognitive and social shifts in understanding and behavior. Given acceptance of the criteria for 

fundamental measurement essential to science and commerce, the hypothesis that PCM, IRT, 

and summated ratings approaches each have an appropriate place in QOC measurement could be 

accepted, with qualifications, in the framework of an evolutionary perspective.  

A paradigm shift similar to the one that provoked what Kuhn (1961) calls the “second 

scientific revolution” in the 19th Century may be occurring in the world of measurement methods 

based in tests and surveys. For instance, even though raw scores are nearly linear in the presence 

of complete data and in the middle of the score distribution, PCM makes it possible to obtain 

linear measures in the presence of missing data and across the entire range of the distribution. 

Even though measurement via tests and surveys seems to have functioned well enough without 

tests of the quantitative hypothesis, and without routine data quality assessment, perhaps 

demands for accountability will make those omissions less tolerable. And even though scale-

dependent metrics may not have seemed terribly cumbersome over the course of the 20th 

Century, in the context of the 21st Century’s ubiquitous computer networks and streamlined 

communications, scale-free metrics will soon become the new norm. 

Similarly, even though the 1 PL IRT measures and calibrations are statistically identical 

with the PCM measures and calibrations, the IRT analysis does nothing to test Hypothesis 1, 

above, that the QOC variable is quantitative, since no data-model fit tests of independence and 

double cancellation are provided. It is also true that, in the contexts of the 2PL and 3PL models, 

as shown below, tests of Hypothesis 1 would be inconsistent with the mathematics structuring 

the estimation process, since the tests would be checking for the invariance that the models 
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overtly compromise by shifting the item difficulty order according to the discriminatory power 

of each individual item. IRT criteria for model choice are accordingly based in the statistical 

capacity of the models to account for variation in the data. When applied to the MEPS QOC 

data, the 3PL and 2PL IRT models clearly fit better than the 1PL model did, with respective chi-

square statistics of -293,899, -293,209, and -288,498.  

These statistical results are confounded, however, by the plots clearly showing that the 

ordering and meaning of the measures and calibrations produced by the 2PL and 3PL IRT 

models vary in arbitrary and uninterpretable ways. Rather than implementing the long-proven 

methods of science that value measurement for revealing anomalous failures of invariance, and 

so facilitating data quality assessment and the identification of new constructs requiring 

investigation (Kruskal 1960; Kuhn 1961, Wimsatt 1981), IRT integrates anomalous interactions 

into the measures and calibrations, concealing unexpected observations deep within the results 

and destroying the possibility of quantitative comparability (Embretson 1996).  

The IRT analysis also falls short of the PCM standard in not providing the graphic 

displays of the construct needed for assessing the interpretability of the measures and 

calibrations. 

Referring again to those displays, in Figures 2 and 3, the overall MEPS QOC item order 

indicates that matters of access to care are of more concern to respondents than matters 

pertaining to the provider. Though not yet widely recognized, a general pattern in QOC and 

satisfaction with health care services has been observed across several independent studies 

(Angelico & Fisher 2000a, 2000b; Fisher 1992a; Fisher & Karabatsos 2000a, 2000b; Karabatsos 

& Fisher 2000). This pattern indicates that 1) the highest quality of care or satisfaction with 

services is usually associated with the physician; 2) somewhat less quality is associated with 

nursing, allied health staff, and general access to care; 3) less quality yet is found with regard to 
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office staff, making appointments, and telephone access; and 4) the least quality is associated 

with waiting room comfort and cleanliness, and parking availability.  

Plainly, the existence of this continuum does not imply that waiting room comfort and 

cleanliness ought to be improved so as to provoke ratings equivalent to those obtained by the 

physician. On the contrary, in the spirit of continuous quality assessment and improvement 

(McLaughlin & Kaluzny 1999), the theoretical stability of the QOC continuum across 

instruments, providers, and health care consumers ought to be employed as the criterion 

reference against which quality improvement efforts are evaluated. Instead of adopting the 

quality control approach’s futile efforts to cut off the low quality tail of the measurement 

distribution, the point is instead to move the entire distribution up the ruler to an overall higher 

quality. 

Should this as yet informally documented pattern prove to be stable across brands of 

instruments, as has been found to be the case with clinician-assigned ratings of physical 

functioning (Fisher 1997a, 1997b; Fisher, Harvey, Taylor, et al. 1995), it should be possible to 

calibrate a reference standard metric to which all instruments measuring QOC would be 

traceable, using methods adapted from the existing standard procedures of metrology (Mandel 

1977 1978; Wernimont 1977, 1978; Pennella 1997). 

 

CONCLUSION 

Although the MEPS QOC instrument will need certain refinements to optimize its 

functioning, PCM analysis provides clear evidence that fundamental measurement systems can 

be created for QOC variables.  

Given a sufficiently reliable QOC measurement system, it should be possible to equate 

different QOC measures together so as to make them traceable to a reference standard metric. 

Fisher and Karabatsos (2003) compare PCM analyses of the MEPS QOC items with similar 
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analyses of the QOC-specific items from the Consumer Assessment of Health Plans Study 

(CAHPS, version 2.0 Adult Core items), also funded by AHRQ. Given that there are no items 

common to both the MEPS and the CAHPS, and that the MEPS measurement reliability is so 

low, equating would probably not be viable. As an alternative, a new instrument has been 

designed according to the PCM principles described above and following the content included in 

the MEPS and CAHPS QOC scales. Research on this scale continues. 

In practice, much research presented in the context of IRT, Rasch measurement, latent 

trait theory, or conjoint analysis is, or strives, in effect, to be PCM. But the hypotheses tested in 

these reports vary widely, as does the quality of their execution. The present report itself is 

undoubtedly far from perfect, but it is hoped that it may be taken as a contribution toward the 

development of improved research standards in the human sciences. 
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                  ITEMS        Person 
                v   w   y   z  Score  
                              (1a)   βn 
         P  a   1   1   1   0   3    1.1 
         E  b   1   1   1   0   3    1.1 
         R  c   1   0   1   0   2     0 
         S  d   1   1   0   0   2     0 
         O  e   1   0   0   0   1   -1.1 
         N  f   0   0   0   1   1   -1.1 
         S                     
   Item                        
   Score  (1b)  5   3   3   1    
          δi  -1.6   0   0  1.6 
 

Table 1.  Six persons’ responses to a 4-item survey. 
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                  ITEMS         
                v   w   y   z   
                                 βn 
         P  a  .94 .75 .75 .38   1.1 
         E  b  .94 .75 .75 .38   1.1 
         R  c  .83 .50 .50 .17    0 
         S  d  .83 .50 .50 .17    0 
         O  e  .63 .25 .25 .06  -1.1 
         N  f  .63 .25 .25 .06  -1.1 
          δi  -1.6   0   0  1.6 
 

Table 2.  The data in Table 1 expressed as probabilities. 
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_____________________________________________________________________ 

Person Summary (N=20,011) 

 Measure Error IMS OMS 

Mean 2.08 .85 .93 .88 

 S.D. 1.42 .37 .74 1.10 

Min. -2.95 .43 .00 .00 

Max. 5.04 4.07 5.60 9.9 

 

ASD = 1.08  RMSE = .92 

Separation = 1.17 Real Reliability = .58 

(Model Reliability = .65) 
 

Item Summary (I=11) 

 Measure Error IMS OMS 

 0.00 .02 .99 .93 

 1.02 .01 .14 .29 

 -1.49 .01 .79 .44 

 1.59 .04 1.28 1.55 

 

ASD = .02  RMSE = 1.02 

Separation = 51 Real Reliability = 1.0 

 
 

_____________________________________________________________________ 

Table 3. Summary statistics for measures and MEPS QOC items. 
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Items: 
7. Satisfaction with staff 
8. Satisfaction with QOC 
10. Satisfied that family members can get care when needed 
 

Response   Observed Avg.     Category 
Category   Count  βn  IMS OMS  Threshold (τjk) 
______________________________________________________________________________ 

1 Not at all satisfied      955    .12  1.25 1.49   
 -.55 (1 to 2) 

2 Not too satisfied    2,290    .49  .80 .66   
 -.42 (2 to 3) 

3 Somewhat satisfied 11,857   1.48  .83 .63   
  .98 (3 to 4) 

4 Very satisfied  40,274   2.91  .83 .90   
________________________________________________________________________ 

 
        CATEGORY PROBABILITIES: MODES - Step measures at intersections 
P      ++-----+-----+-----+-----+-----+-----+-----+-----+-----+-----++ 
R  1.0 +                                                    444444444+ 
O      |111111                                        444444         | 
B      |      111                                 4444               | 
A      |         11                             44                   | 
B   .8 +           11                         44                     + 
I      |             1                       4                       | 
L      |              1                    44                        | 
I      |               1                  4                          | 
T   .6 +                1                4                           + 
Y      |                 1              4                            | 
    .5 +                  1            4                             + 
O      |                   1     33333*                              | 
F   .4 +                   1   33    4 33                            + 
       |                    * 3     4    3                           | 
R      |                2222 *22   4      33                         | 
E      |              22    3 1 224         33                       | 
S   .2 +            22    33   1 422          33                     + 
P      |          22     3      *   22          33                   | 
O      |      2222     33     44 11   22          333                | 
N      |222222     3333    444     111  2222         3333333         | 
S   .0 +***********44444444           111111*************************+ 
E      ++-----+-----+-----+-----+-----+-----+-----+-----+-----+-----++ 
       -4    -3    -2    -1     0     1     2     3     4     5     6 
                       PERSON [MINUS] ITEM MEASURE 
 

Table 4. Rating scale structure analysis, items 7, 8, & 10
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Items 

4. Provider listens and gives information 
5. Provider asks about treatments other doctors may give 
6. Confident in provider’s ability 
9. Everyone in family received care 
11. No difficulty receiving health care 

 
Category 
Number 

Category 
Label 

 
N 

Average 
Measure 

 
IMS 

 
OMS 

 
1 

 
No 

 
9,773 

 
1.30 

 
1.04 

 
.97 

 
2 

 
Yes 

 
82,421 

 
3.13 

 
1.07 

 

 
1.05 

 
 

 
P      ++------+------+------+------+------+------+------+------++ 
R  1.0 +1111111111111111                         2222222222222222+ 
O      |                1111                 2222                | 
B      |                    11             22                    | 
A      |                      1           2                      | 
B   .8 +                       1         2                       + 
I      |                        1       2                        | 
L      |                         1     2                         | 
I      |                          1   2                          | 
T   .6 +                          1  2                           + 
Y      |                           1 2                           | 
    .5 +                            *                            + 
O      |                           2 1                           | 
F   .4 +                          2  1                           + 
       |                          2   1                          | 
R      |                         2     1                         | 
E      |                        2       1                        | 
S   .2 +                       2         1                       + 
P      |                      2           1                      | 
O      |                    22             11                    | 
N      |                2222                 1111                | 
S   .0 + 222222222222222                         1111111111111111+ 
E      ++------+------+------+------+------+------+------+------++ 
       -8     -6     -4     -2      0      2      4      6      8 

  QOC PERSON MEASURE 
 
Table 5.  Response category structure, items 4, 5, 6, 9, & 11 
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Items 
1. How difficult is it to get appointments? 
3. How difficult is it to contact provider by phone? 
 
 

Category 
Number 

Category 
Label 

 
N 

Average 
Measure 

 
IMS 

 
OMS 

Step 
Threshold 

 
1 

 
Very 

Difficult 

 
2,989 

 
−0.59 

 
.95 

 
.91 

 
2 

 
Somewhat 
Difficult 

 
4,892 

 
0.07 

 
.94 

 
.84 

 
3 

 
Not Too 
Difficult 

 
11,630 

 
0.82 

 
.93 

 
.80 

 
4 

 
Not at all 
Difficult 

 

 
13,390 

 
1.90 

 
1.16 

 
1.11 

 

 
 
 
−0.72  (1→2) 
 
 
−0.43  (2→3) 
 
 
   1.16 (3→4) 

        CATEGORY PROBABILITIES: MODES - Step measures at intersections 
P      ++-----+-----+-----+-----+-----+-----+-----+-----+-----+-----++ 
R  1.0 +                                                     44444444+ 
O      |11111                                          444444        | 
B      |     111                                   4444              | 
A      |        11                               44                  | 
B   .8 +          11                           44                    + 
I      |            1                         4                      | 
L      |             1                      44                       | 
I      |              1                    4                         | 
T   .6 +               1                  4                          + 
Y      |                1                4                           | 
    .5 +                 1        3333  4                            + 
O      |                  1     33    3*                             | 
F   .4 +                   1   3      4 33                           + 
       |                  22*2*      4    3                          | 
R      |               222  *3 22   4      33                        | 
E      |             22    3 1   2 4         33                      | 
S   .2 +           22     3   11  *2           33                    + 
P      |         22      3      *4  22           33                  | 
O      |     2222     333     44 11   22           3333              | 
N      |22222      333     444     111  22222          333333        | 
S   .0 +***********44444444           1111111************************+ 
E      ++-----+-----+-----+-----+-----+-----+-----+-----+-----+-----++ 
       -4    -3    -2    -1     0     1     2     3     4     5     6 
                       PERSON [MINUS] ITEM MEASURE 
  
 
Table 6.  Response category structure, items 1 & 3 
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Item 
2.  How long is the usual wait for a medical appointment? 
 

Category 
Number 

Category 
Label 

 
N 

Average 
Measure 

 
IMS 

 
OMS 

Step 
Threshold 

 
1 

 
>2 hours 

 
250 

 
0.38 

 
1.37 

 
1.44 

 
2 

 
1-2 hours 

 
1,111 

 
0.89 

 
1.24 

 
1.29 

 
3 

 
31 to 59 
minutes 

 
1,831 

 
1.34 

 
1.17 

 
1.20 

 
4 

 
16 to 30 
minutes 

 
5,212 

 
1.95 

 
1.21 

 
1.20 

 
 
2.69  (1→2) 
 
1.11  (2→3) 
 
1.06  (3→4) 
 
 
  0.43  (4→5) 

 
5 

 
5-15 

minutes 

 
7,387 

 
2.92 

 
1.24 

 
1.16 

 
 
  4.43  (5→6) 
 

6 <5 
minutes 

669 3.33 1.82 1.26  

 
 
        CATEGORY PROBABILITIES: MODES - Step measures at intersections 
P      ++-----+-----+-----+-----+-----+-----+-----+-----+-----+-----++ 
R  1.0 +                                                             + 
O      |                                                             | 
B      |                                                             | 
A      |                                                            6| 
B   .8 +1                                    5555                  6 + 
I      | 1                                555    555             66  | 
L      |  1                              5          55         66    | 
I      |   11                          55             55      6      | 
T   .6 +     1                        5                 5    6       + 
Y      |      1                      5                   5  6        | 
    .5 +       1  222               5                     5*         + 
O      |        *2   22      444444*                     66 5        | 
F   .4 +      22 1     2    4     5 4                   6    5       + 
       |    22    1     2  4     5   44                6      5      | 
R      |   2       1    3**3    5      4              6        55    | 
E      | 22         1 33 42 33 5        44          66           5   | 
S   .2 +2           3*  4  2  *3          44      66              55 + 
P      |          33  *4    **  33          44  66                  5| 
O      |       333  44 11  5  22  33         6**4                    | 
N      |   3333  444   55**1    222 333366666    444444              | 
S   .0 +***************66666*****************************************+ 
E      ++-----+-----+-----+-----+-----+-----+-----+-----+-----+-----++ 
       -4    -3    -2    -1     0     1     2     3     4     5     6 
                       PERSON [MINUS] ITEM MEASURE 
 
Table 7.  Response category structure, item 2
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ITEMS LOWDIF MIDDIFF HIDIFF43,44,47,49,

51,52
42,45,46,48,

50
LOWDIFF Pearson 

Correlation
1.000 .718 .255 .706 .524

Sig. 
(2-tailed)

. .000 .000 .000 .000

N 16121 16069 11476 16121 16121
MIDDIFF Pearson 

Correlation
.718 1.000 .470 .875 .680

Sig. 
(2-tailed)

.000 . .000 .000 .000

N 16069 16083 11476 16069 16069
HIDIFF Pearson 

Correlation
.255 .470 1.000 .889 .799

Sig. 
(2-tailed)

.000 .000 . .000 .000

N 11476 11476 11476 11476 11476
Random
Selection

43,44,47,49,51,52

Pearson 
Correlation

.706 .875 .889 1.000 .813

Sig. 
(2-tailed)

.000 .000 .000 . .000

N 16121 16069 11476 16121 16121
Random
Selection

42,45,46,48,50

Pearson 
Correlation

.524 .680 .799 .813 1.000

Sig. 
(2-tailed)

.000 .000 .000 .000 .

N 16121 16069 11476 16121 16121
**  Correlation is significant at the 0.01 level (2-tailed). 
 
 
Table 8.  Comparison of QOC person measures across several item-subset conditions (step-anchored 

analysis). 
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N=6,094   ANALYZABLE FOR LOW MEDIAN GROUP 
N=4,915  ANALYZABLE FOR HIGH MEDIAN GROUP 
Correlations 

N_500 N_250 N_100 N_35A N_35B MEDI_LOWMEDI_HI
N_500 Pearson

Correlation
1.000 .912 .921 .943 .839 .991 .865

Sig. (2-tailed) . .000 .000 .000 .001 .000 .001
N 11 11 11 11 11 11 11

N_250 Pearson
Correlation

.912 1.000 .973 .932 .770 .922 .625

Sig. (2-tailed) .000 . .000 .000 .006 .000 .040
N 11 11 11 11 11 11 11

N_100 Pearson
Correlation

.921 .973 1.000 .931 .877 .942 .725

Sig. (2-tailed) .000 .000 . .000 .000 .000 .012
N 11 11 11 11 11 11 11

N_35A Pearson
Correlation

.943 .932 .931 1.000 .795 .945 .783

Sig. (2-tailed) .000 .000 .000 . .003 .000 .004
N 11 11 11 11 11 11 11

N_35B Pearson
Correlation

.839 .770 .877 .795 1.000 .854 .839

Sig. (2-tailed) .001 .006 .000 .003 . .001 .001
N 11 11 11 11 11 11 11

MEDI_L
OW

Pearson
Correlation

.991 .922 .942 .945 .854 1.000 .860

Sig. (2-tailed) .000 .000 .000 .000 .001 . .001
N 11 11 11 11 11 11 11

MEDI_HI Pearson
Correlation

.865 .625 .725 .783 .839 .860 1.000

Sig. (2-tailed) .001 .040 .012 .004 .001 .001 .
N 11 11 11 11 11 11 11

**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 
 
Table 9. Correlation analysis --Comparison of item calibrations across random samples, and by median 

split (unanchored analysis). 
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Correlations 
MEDIC PRVHMO PUB

MEDIC Pearson 
Correlation

1.000 .946 .948

Sig. (2-tailed) . .000 .000
N 11 11 11

PRVHMO Pearson 
Correlation

.946 1.000 .958

Sig. (2-tailed) .000 . .000
N 11 11 11

PUB Pearson 
Correlation

.948 .958 1.000

Sig. (2-tailed) .000 .000 .
N 11 11 11

**  Correlation is significant at the 0.01 level (2-tailed). 
 
Table 10. Correlation matrix of the item calibrations: Public HMO vs. Private HMO vs. Medicare. 
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Descriptives 
QOC  

N Mean Std. 
Deviation

Std. Error 95% Confidence 
Interval for Mean 

 

Minimum Maximum

    Lower 
Bound 

Upper 
Bound 

  

Priv HMO 4791 4.84 2.39 .003 4.77 4.91 -5.89 8.09 
Medicare HMO 123 4.90 2.48 .22 4.46 5.34 -5.47 8.09 

Public HMO 693 4.57 2.62 .10 4.37 4.76 -5.47 8.09 
Priv HMO & 

Medicare HMO
106 5.54 1.91 .19 5.17 5.90 -.88 8.09 

Private HMO & 
Public HMO

37 4.03 2.94 .48 3.06 5.01 -4.29 8.09 

Medicare HMO & 
Public HMO

16 4.92 2.06 .51 3.83 6.02 1.37 8.09 

Private HMO & 
Medicare HMO & 

Public HMO

7 4.80 2.49 .94 2.50 7.11 2.13 8.09 

Total 5773 4.82 2.42 .03 4.75 4.88 -5.89 8.09 
 
 
 
Test of Homogeneity of Variances---reject H0: variances are equal 
Use Tamhane, Dunnett’s T3, Games-Howell, and Dunnett’s D3 for Post-Hoc 
QOC  
Levene 
Statistic

Df1 df2 Sig.

2.06 6 5766 .055
 
 
ANOVA 
QOC  

Sum of 
Squares

df Mean 
Square

F Sig.

Between 
Groups

124.05 6 20.67 3.54 .002

Within 
Groups

33656.43 5766 5.84

Total 33780.47 5772
 
 
Private HMO and Medicare HMO > Private HMO   (+.70)  T, DT3 
Private HMO and Medicare HMO > Public HMO (+.97)   T, DT3 
Private HMO and Medicare HMO > Private HMO and Public HMO (1.50)       T, DT3, GH,DC 
 
 
Table 11. ANOVA analysis comparing person measures: Public HMO vs. Private HMO vs. Medicare. 
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MOST MISFITTING RESPONSE STRINGS 
ITEM                 OUTMNSQ  |PERSON 
                              |2222221111           22222111111111111111111 
                              |22222140009777766554403311999888877211110000522222 
                              |66666689921111122416684433700662275644442222353333 
                              |77777454479777600716642288877335465155447777064444 
                              |87654125409210954444367687221521630454984321069875 
                           high-------------------------------------------------- 
     5 ASKS ABOUT OTH   1.55 A|........................11........................ 
     2 APPT. WAITING    1.23 B|........................666.......6.6666.......... 
    11 [NO PROBLEMS]    1.11 C|111111.11..1111...111.....1....................... 
     9 [EVERYONE HAS    1.03 E|.........11....111......111....1111111111111...... 
    10 SATIS FAMILY      .89 F|..................................3............... 
     4 LISTENS & GIVES   .75 d|......1..............111...1111..............11111 
     6 CONFIDENT IN PR   .44 c|............................................1..... 
                              |----------------------------------------------low- 
 
 
 
Table 12. Using fit statistics to identify inconsistent responses that do not contribute to the measurement 

effort. 
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Features WINSTEPS

PCM 
MULTILOG 

IRT 
SUMMED 
RATINGS 

Starts from ordinal observations (counts of correct answers or 
sums of ratings) 

 
Yes 

 
Yes 

 
Yes 

Additive unit of measurement Yes Yes (1P only) No 
Estimates error Yes Yes No 

Accommodates missing data Yes Yes No 
Implements tests of independence & double cancellation (tests 

data consistency) 
Yes No No 

Persons and items scaled on common metric Yes Yes No 
All statistics reported for both persons and items in same 

analysis 
Yes No No 

Provides multiples tests of construct validity Yes No No 
Provides multiple supports for creation of keyforms Yes No No 

Parameter Separation Reliability Coefficient Yes No No 
Approximation of Cronbach’s alpha Yes Yes1 Yes 

Error and reliability reported in both modeled and fit-adjusted 
forms 

Yes No No 

Infit Mean Square Yes No No 
Stdized Infit Yes No No 

Outfit Mean Square Yes No No 
Stdized Outfit Yes No No 

Pt. Biserial Correlations Yes No No 
Bias displacement estimates Yes No No 

Plots variable maps Yes No No 
Data displayed in Guttman scalogram format Yes No No 

Individual expected vs observed responses and residuals 
detailed in plots and tables 

Yes No No 

Infit-Outfit plots Yes No No 
Infit/Outfit-Measure plots Yes No No 
Raw score-Measure plots Yes No No 

Principal Components factor analysis of residuals Yes No No 
Dichotomous models Yes Yes No 
Rating Scale models Yes Yes No 
Partial Credit models Yes Yes No 
Multifaceted models No No No 

2P models No Yes No 
3P models No Yes No 

Samejima’s Graded model No Yes No 
Bock’s Nominal model No Yes No 

Thissen/Steinberg multiple choice model No Yes No 
Tests assumption of normal population distribution No Yes No 

Combines different models in single analysis Yes Yes No 
 
Table 13. Comparison of various features of typical PCM, IRT, and Summated Ratings analyses. (Many 
features of PCM and IRT can be applied to raw scores by competent users of generic statistical packages, such as 
SAS, SPSS, SYSTAT, etc.) 
                                                           
1 Marginal reliability (Thissen 1991, p. 4-11). 
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DOUBLE CANCELLATION 

Figure 1.  Necessary and sufficient conditions for interval scaling and measurement invariance. 
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MEASURE   PERSONS          MAP OF QOC ITEMS 
IN LOGITS 
 

High QOC  
 
 MARY 
       .############    
                        
                        
     6                  
                        
                        
                        
     5       .######    
                   .    
                   .    
                   .    
                   .    
     4                  
                        
           .########    
                   .    
                   .    
     3            .#    

     .########    
             .    
      .#######    

                   .    
     2      .#######    

             .    
             .######    2. Usual wait time for a medical appointment1 (1.59) 
               .####    3. Phone access (1.29) 
                .###    1. Difficulty in obtaining appointments (1.22) 
     1         .####     
                 .##    5. Provider asks about treatments other doctors may give2 (0.66) 
                  .#    
                  .#    
                   .    
     0           .##   10. Satisfied that family members can get needed care (−0.10) 
    TOM            .    7. Satisfaction with staff (−0.13) 
                   .   11. No difficulty receiving health care (−0.28) 
                   .    8.  Satisfaction with QOC (−0.43) 
                  .#    
    -1             .    9. Everyone in family received care (−0.94) 
                   .    
                   .    6. Confident in provider ability (−1.38) 
   CINDY           .    4. Provider listens and gives information (−1.49) 
                   .    
    -2             .    
                   .    
                   .    
                        

Forms of QOC difficult to provide

Noisy items: 
 
1 IMS = 1.3, OMS = 1.2 
2 IMS = 1.2, OMS = 1.6 

                        
Low QOC 

Forms of QOC easy to provide 
    -3             .    
                        
                        
 
Figure 2. Variable map.  Each ‘#’ is 261 cases; each ‘.’ is less than 261 cases. 
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EXPECTED SCORE: MEAN  (":" INDICATES HALF-SCORE POINT) 
 
Less Satisfied  >>>>>>>>>>>>>>>>>>>>>>>>>>>   More Satisfied 
-3       -1         1         3         5         7         9 
|---------+---------+---------+---------+---------+---------| ITEM 
1  1   :    2  : 3  :  4   :       5         :     6        6 [short] APP WAIT TIME(2) 
|                                                           | 
1          1  :   2  :  3    :   4                          4 [EASY] CONTACT PHONE (3) 
1         1   :   2  :  3    :   4                          4 [EASY] TO GET APPT (1) 
|                                                           | 
|                                                           | 
1            1    :     2                                   2 ASKS ABOUT OTHER TRTS (5) 
|                                                           | 
|                                                           | 
1   1   :  2  :  3    :   4                                 4 SATIS FAMILY CAN GET CARE (10) 
1   1  :   2  :  3   :    4                                 4 SATIS W/ STAFF (7) 
1       1     :    2                                        2 [NO PROBLEMS] OBTAIN CARE (11) 
1  1  :   2 :   3   :   4                                   4 SATIS W/ QUALITY OF CARE (8) 
|                                                           | 
1    1    :     2                                           2 [EVERYONE HAS HAD] CARE (9) 
|                                                           | 
1  1    :     2                                             2 CONFIDENT IN ABILITY (6) 
1 1     :    2                                              2 LISTENS & GIVES INFO (4) 
|---------+---------+---------+---------+---------+---------|   
-3       -1         1         3         5         7         9 
 
              TOM                 MARY 
 
                    1111 2 2 2   2      1                   3 
1      2   3  1622368006 012 432 1     16                   3 
7      2 1166521598031389003231091    410                   8 
0  4125114965967068458498481128442   2477                   3  PERSONS 
           T      S      M       S      T 
 
 
 
 

Figure 3. Plot of expected responses (Tom’s expected responses are underlined, Mary’s are circled). 
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Figure 4.  QOC person measures, 2 category vs. 4-category items (r=.71, unanchored). 
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Figure 5. Comparison of item calibrations across random samples, and by median split (unanchored 

analysis). 
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Figure 6. Comparison of QOC item calibrations: Public HMO vs. Private HMO vs. Medicare. 
N
 
 = 562 Public HMO, N = 3539  Private HMO, N = 190 Medicare  
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        EXPECTED SCORE OGIVE: MEANS 
       ++-----+-----+-----+-----+-----+-----+-----+-----+-----+-----++ 
     6 +                                                             + 
       |                                                      6666666| 
   5.5 +                                                 55666       + 
       |                                           555555  |         | 
E    5 +                                    5555555        |         + 
X      |                               55555   *           |         | 
P  4.5 +                            455        *           |         + 
E      |                         444 |         *           |         | 
C    4 +                       44    |         *           |         + 
T      |                      4 *    |         *           |         | 
E  3.5 +                    34  *    |         *           |         + 
D      |                   3|   *    |         *           |         | 
     3 +                 33 |   *    |         *           |         + 
S      |                3*  |   *    |         *           |         | 
C  2.5 +              23 *  |   *    |         *           |         + 
O      |            22 | *  |   *    |         *           |         | 
R    2 +          22   | *  |   *    |         *           |         + 
E      |        22 *   | *  |   *    |         *           |         | 
   1.5 +    1122   *   | *  |   *    |         *           |         + 
       |1111 |     *   | *  |   *    |         *           |         | 
     1 +     |     *   | *  |   *    |         *           |         + 
       ++-----+-----+-----+-----+-----+-----+-----+-----+-----+-----++ 
       -4    -3    -2    -1     0     1     2     3     4     5     6 
                       PERSON [MINUS] ITEM MEASURE 
 
 
 
 
Figure 7.  Plot of non-linear ratings against linear QOC measures, for item 2, Usual wait time for a 

medical appointment 
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Figure 8. Plot of scores against linear QOC measures. 
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Figure 9. Plot of person scores against linear QOC measures (actual, r=.79). 
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Figure 10. Plot of item scores against linear QOC item calibrations (R=.79). 
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1P(1.0) Multilog no anchors all items (Ak&Aj=1.0)
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Figure 11. WINSTEPS PCM vs. MULTILOG 1PL Samejima Graded Response Model measures 
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1P Mlog NoPop MLE measures (Ak&Aj=1.0, items/steps anchored to Winsteps
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Figure 12. WINSTEPS PCM vs. MULTILOG 1PL Samejima Graded Response MEPS QOC measures, 

with the MULTILOG items anchored at the WINSTEPS values 
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1P(1.8) Multilog no anchors all items (Ak&Aj=1.0)
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Figure 13. WINSTEPS PCM vs. MULTILOG 1PL MEPS QOC measures, with the MULTILOG 2d 

item parameter fixed at 1.8 
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22: 1P Multilog dichotomous calibrations
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Figure 14. WINSTEPS dichotomous item calibrations vs. MULTILOG 1PL dichotomous calibrations. 

(The item labeled 42 corresponds to item 1 [AC17], and 52, to item 11 [AC25], in this and the 
following plots.) 
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1P Multilog MAP measures all dichot items
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Figure 15. WINSTEPS dichotomous MEPS QOC measures vs. MULTILOG 1PL maximum a posteriori 

dichotomous measures 
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26: 2P Multilog calibrations (RA PA L2)
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Figure 16. WINSTEPS dichotomous MEPS QOC calibrations vs. MULTILOG 2P calibrations (using 

marginal maximum likelihood estimation and data input as counts of response patterns). 
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27: 3P Multilog calibrations (RA IN L3)
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Figure 17. WINSTEPS dichotomous MEPS QOC calibrations vs. MULTILOG 3P calibrations (using 

marginal maximum likelihood estimation and data input as individual item response vectors). 
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26: 2P Multilog MAP measures 11 dichot items
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Figure 18. WINSTEPS dichotomous MEPS QOC measures vs. MULTILOG 2PL maximum a posteriori 

measures 
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25: 3P Multilog MAP measures 11 dichot items
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Figure 19. WINSTEPS dichotomous MEPS QOC measures vs. MULTILOG 3PL maximum a posteriori 

measures 
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26: 2P Multilog MAP measures 11 dichot items
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Figure 20. MULTILOG 3PL maximum a posteriori measures vs. MULTILOG 2PL maximum a 

posteriori measures 
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25: 3P Multilog discriminations (RA PA L3)
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Figure 21. Variation in item discrimination values by type of data input for the MULTILOG 3P model 

(PA indicates data input as counts of response patterns; IN indicates data input as individual item 
response vectors). 
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26: 2P Multilog discriminations (RA PA L2)
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Figure 22. Variation in item discrimination parameter estimates in MULTILOG 3P vs. 2P models, using 

the same estimation method (marginal maximum likelihood) and the same type of data input 
(counts of response patterns). 
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