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In gaining a better understanding of how to characterise human response, essential to
improved person-centred care and other situations where human factors are crucial, recent
work has attempted to link metrological (resolution, classification effectiveness) and psy-
chometric (Rasch) characterisation of Man as a Measurement Instrument. The present
work offers a more detailed account of these investigations following our first preliminary
conference report, continuing a study of elementary tasks, such as counting dots, where
one knows independently the expected value because the measurement object (collection
of dots) is prepared in advance. The analysis is compared and contrasted with recent
approaches to this problem by others, for instance using signal error fidelity and loss func-
tions. Independent sources of measurement uncertainty, such as under-estimation of
scores, are distinguished from separate estimates of task challenge and individual counting
ability, and accounted for in estimates of reliability of the various measures.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The reliable characterisation of the human measuring
instrument [1], be it with the five senses or the full physi-
ological, mental, cognitive and behavioural richness of
human perception, is essential in many applications.
Some of these include enhancement of various human
functions, machine learning [2] to assist in mining the ever
increasing amounts of information available in society, or
aiding a disabled, ill or elderly person to cope better with
everyday tasks [3], to name a few. Quantities of concern
are not merely technical but also more human, such as
comfort, pleasure, and beauty [4].

Bearing in mind that formulation of metrological con-
cepts commensurate with those established in traditional
engineering is as yet in its infancy in perceptual contexts
[5–8], we have initiated work attempting to link metrolog-
ical (resolution, classification effectiveness) and psycho-
metric (Rasch) characterisation of Man as a Measurement
Instrument, as briefly reported in a conference proceedings
[9]. The present work offers a more detailed account of
these investigations, continuing our study of elementary
tasks, such as counting dots, where one knows indepen-
dently the expected value because the measurement object
(collection of dots) is prepared in advance. Two key aspects
of quality-assured measurement – traceability and uncer-
tainty – must be kept in focus when metrologically charac-
terising Man as a Measurement Instrument.

Some method of metrological traceability to invariant
unit standards for measurements based on ordinal obser-
vations is needed when the ability of a person to perform
a task of classifying an entity of given reference level is
to be determined. Patient health, for example, is increas-
ingly rated in health clinics on ordinal scales linearized
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via a log-odds transformation, and appropriate treatment
is decided by comparing the actual ratings with corre-
sponding patterns of typical health ratings for similar
patients from earlier studies. The comparability of such
ratings has to be reliable to a sufficient degree of accuracy
if the patient is to be treated appropriately. When and
where such accuracy can be regularly obtained, the obser-
vational framework could be redesigned to omit the
observed ordinal scores and to incorporate a metrologi-
cally traceable unit [7,10,11].

The second aspect of quality-assured measurement –
namely, measurement uncertainty and reliability – also
presents some challenges where observations are made
with Man as a Measurement Instrument. In particular the
usual tools of statistics, such as for calculation of the mean
and standard deviation, needed when expressing uncer-
tainty, cannot generally be applied to scores obtained with
questionnaires and similar instruments, since a lack of an
invariant unit renders uninterpretable the location and dis-
persion of qualitative measurements on ordinal scales [12].
At the same time, measurement uncertainty, since it
reflects the quality of measurement, also provides a mea-
sure of the ability of human to perform as an instrument.
2. Rationale for a potential expansion of the
metrological framework

An inquiry into the viability of a uniform unit of physi-
cal functioning in medical rehabilitation compared results
produced across four different measurement instruments
applied to eleven different samples [7]. The heuristic
model employed producing each set of results demands
estimates ‘‘not affected by the abilities or attitudes of the
particular persons measured, or by the difficulties of the
particular survey or test items used to measure’’. Fit to this
model allows parallels to be drawn between psychometric
concepts of invariance and equating, on the one hand, and
metrological concepts of traceability to repeatable and
reproducible unit standards, on the other. This need for
more rigorously defined and more widely distributed mea-
sures is implicated by the trend in health care associated
with a shift from ‘‘local economies of disease-crisis man-
agement to regional, national, and international economies
of population-based, preventive health management’’. As
demand for proactive prevention displaces reactive
responses, it is virtually inevitable that continuing growth
in the speed and networking reach of computational tools
will propel invariant measurement into significant new
roles supporting accountability and comparability in
health care.

Human beings inevitably play critical roles in measure-
ment [13]. From the perspective of engineering, the opera-
tion of any measurement system requires calibration, data
acquisition, and data presentation [14]. Recent studies in
psychophysical scaling [15] combine psychometric and
engineering perspectives, relating perceptual intensity to
stimulus intensity by explaining the Weber–Fechner law
in terms of signal error fidelity [16]. Other studies describe
adaptation by biological sensory systems in terms of the
costs of perceptual task errors [17].
Another approach to linking engineering and psycho-
metric conceptualizations of measurement systems is sug-
gested by psychological measurement models introduced
by Rasch [18–20]. When a human is instrumental to the
performance of elementary tasks – such as counting dots
[21,22] – person abilities relative to the degree of challenge
posed by different tasks can be expressed in terms of mea-
sures invariantly located and dispersed on an interval scale
[23,24]. The ability to perform the task can be calibrated
and measurement uncertainty can be assessed in this con-
text with the special advantage of independent advance
knowledge of the measurement object’s true value (a given
number of dots).
3. Grounding measuring in counting

Our first preliminary brief report in a conference pro-
ceedings [9] highlighted the suitability for our research of
previous studies by others [22] concerning the counting
ability of the Mundurucu, an Amazonian indigenous peo-
ple with little access to Western-style educational
resources and where counting above the number five is
often a challenge. Research investigating the conceptual
link between number and spatially distributed dots had
already suggested that the Mundurucu intuitively employ
a logarithmic transformation of impressions of varying
amounts (Fig. 1), meaning that ‘‘larger numbers require a
proportional larger difference in order to remain equally
discriminable’’ (Weber’s law) [22]. In the present work,
we extend the analysis of Dehaene et al. [22], taking
advantage, as they, when attempting to characterise
human response, of the conceptual simplicity where one
knows independently the expected value (the number of
dots). Our aim is to explore further the link between
metrological (resolution, classification effectiveness) and
psychometric (Rasch) characterisation of Man as a
Measurement Instrument.

Fechner was among the earliest to note the contrast
between the linearity of measures and the nonlinearity of
intuited impressions for the human senses, a contrast of
ongoing interest in neurological research [25]. Because a
fairly constant degree of imprecision is maintained across
several orders of magnitude, the ‘‘Gaussian tuning curve’’
serves, in effect, as a kind of internally embodied sensory
slide rule [22]. By identifying and describing the logarith-
mic proportionality of sensations and stimuli, Fechner con-
nected physical experience with linear geometry in a way
that set the stage for Thurstone, and, later, Rasch, to refo-
cus human measurement away from its previous preoccu-
pation with purely psychophysical phenomena to broader
concerns with psychological, economic, and social phe-
nomena [26,27].

It is important to note the deeper connection here that
real things, like the sides of triangles, rocks, or human
behaviours, are never identical, and so do not ever conform
perfectly with expectations formed on the basis of a math-
ematical formulation of a scientific law or measurement
model. Measurement, whether of counting ability or of
mass or temperature, requires abstract invariant units that
physically cannot correspond directly with empirical



Fig. 1. Average location of numbers, m’, on the horizontal segment, separately for Mundurucu participants (left column) and for American participants
(right column) [22]. Licensed for reproduction: Licensee: Leslie R Pendrill, License Date: Apr 13, 2015, License Number: 3607091428035, Publication:
Science.
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observations [23]. By ‘invariant unit’ we mean a constant
unit, not affected by the abilities or attitudes of the partic-
ular persons measured, or by the difficulties of the partic-
ular survey or test items used to measure. Here again,
experimental tests as to the usefulness of approximations
to the desired linear units hinge on the natural logarithm.

4. Human performance related to invariant measures on
interval scale

Can the various metrological instrument performance
metrics of classical engineering [28] – sensitivity; resolu-
tion; linearity; bias; environmental influence sensitivity;
etc – be applied to assessing the performance of Man as
a Measurement Instrument [13,14]?

4.1. Metrological characterisation

Fig. 2 shows the scatter of counting data amongst the 33
Indians (adults and children) studied by Dehaene et al.
[22], portrayed as a probability mass function (PMF) com-
monly employed for discrete data, where the probability,
qc, of classifying a particular count, c, is plotted against
the range of K levels/categories.

Limited measurement quality leads to incorrect classifi-
cation, as depicted with the PMF shown in Fig. 2. This scat-
ter is associated with the limited performance of the
human instrument (the number of dots is of course fixed
and known for each nominal count), in general both for
each individual as well as from variations from person to
person studied by Dehaene et al. [22]. In the general case,
the probability, qc, would be given by:

qc ¼
XK

k¼1

pk � Pc;k

where the prior distribution is described by pk and the
(conditional) probability of observing a particular count c
when the ‘true’ count is M is Pc;M . In the particular case
of the Mundurucu study:

qc ¼ Pc;k
since the prior state is known exactly, i.e. pk ¼
1; k ¼ M
0; k – M

�
It is assumed, in characterising the Mundurucu count-

ing data with discrete PMFs, that the human observer
recognises discrete dots (as ‘units’ [I] of counts, where I is
the unit matrix) – perhaps by ‘coding’ [16,17] – so a non-
integer response for the overall count for each stimulus
value is a result of scatter in estimated integer counts
rather than a perception of fractions.

It might be tempting to calculate simply, from the PMF
of Fig. 2, a mean (expectation value, E) and variance (V) of
the measured count fX ¼ m0g from the regular statistical
expressions:

EðfXg � ½I�Þ ¼
XK

c¼1

qc � ðfmcg � ½I�Þ ð1Þ

VðfXg � ½I�Þ ¼
PK

c¼1½qc � fmcg � ½I� � EðfXg � ½I�Þ�2

K � 1
ð2Þ

to characterise the dispersion of counting data, where K is
the number of discrete levels/categories.

This has, however, to be done with care since the per-
ceived counts along the horizontal axis of Fig. 2 are argu-
ably not on a regular quantitative scale, where relations
between the numbers would represent (exact) relations
between the objects (i.e. perceived counts of dots), but
rather on a comparative ‘ordinal’ scale which merely
allows objects to be related to each other with respect to
an overall order [29]. To describe this mathematically, note
firstly that if expressions (1) and (2) were to be evaluated
in the state prior to measurement, which provides the
‘stimulus’ set of metrological references with which the
human instrument is to be calibrated, then the probability
for count category k is pk and the term mk ¼ k is simply the
known integer number of dots. In that prior state, the x-
axis would be a regular quantitative scale and the usual
statistical tools can be applied without reservation.
However, after measurement, for the ‘response’ results
shown in Fig. 2, with count probability qc , the correspond-
ing simplification of mc as the perceived number of dots



Fig. 2. Probability ‘mass’ distributions (PMF) of ‘perceptive’ counting, with ‘true’ value M. Data for Mundurucu counters from [22].

Fig. 3. Simple psychophysical model of Weber–Fechner perception
(adapted from [16]).
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cannot be made. The perceived count numbers along the x-
axis in this posterior case are increasingly distorted as the
human instrument attempts to count larger numbers of
dots. Since the x-axis in each plot of Fig. 2 spans a range
of count values – e.g. the count of ‘9’ dots covers the range
4–12 – account has to be taken for this ordinal scale distor-
tion in each plot.

The x-axis in the present elementary case can be seen as
a prototype for whole families of qualitative scales – such
as responses to multiple choice questionnaires – where it
is increasingly recognised that many of the regular tools
of statistics cannot be applied [12]. In such wider applica-
tions, one does not in general have the advantage of having
access to known stimulus values.

A simple, psychophysical model of each human percep-
tion can be formulated, considering Man as a Measurement
Instrument. As indicated in Fig. 3, the instrument sensitiv-
ity, C – defined in engineering metrology as the ratio of the
output R (the perceived count) to the input S (the known
stimulus) – varies across the range of stimulus values:
The observations (shown in Fig. 2) seem to indicate that,
as the challenge of counting higher numbers of dots
increases, there is a corresponding increase in bias
between stimulus and response values. At the same time,
the dispersion (variance) in the Dehaene et al. [22] data
appears largely constant from count to count.

Similar care in treating ordinal data has to be taken
when adopting the quantization (Q) mapping approach
employed recently [16] to interpret the Mundurucu obser-
vations, since in the numerator of an expression [Eq. (3)
below] for expected relative error (ERE), the difference

between the stimulus, S, and its ‘quantized’ value, Ŝ in that
approach, is arguably on an ordinal rather than a more
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quantitative scale defined by an invariant unit. Dividing by
the ‘energy’ S2 in expression (3) does not in our opinion
guarantee the scale-invariance claimed by Sun et al. [16].
EREðQÞ ¼ E
jS� Ŝj2

S2

" #
ð3Þ

A commonly expressed reservation to modelling human
response in terms of engineering metrology is that the
human ‘instrument’ is notoriously variable and unpre-
dictable. We would counter this reservation by pointing
out that even a regular engineered instrument used in
the field – e.g. in a harsh industrial environment – could
display potentially large variability: the size of the varia-
tion in itself is no reason not to attempt, or indeed could
be a strong motive, to make such a characterisation.
Secondly, as will be discussed below, there are plenty of
examples, for instance in psychology and the social
sciences, where human ‘instruments’ are characterised in
this way, notwithstanding their variability: the examina-
tion of pupils in a school class being a classic example.
The perception of instability in psychological and social
constructs is related in large part to uncontrolled variation
in representations and experimental contrasts. With the
wider and larger scale applications of probabilistic mea-
surement modelling that have taken place over the last
several decades, however, evidence of empirical stability
and theoretical explanatory power has increased substan-
tially [7,10,13,18–20].

In this section, probability terms have been usefully
employed to deal with ordinal data, even when the corre-
sponding measurement values are not susceptible to regu-
lar statistical tools. Our current work therefore adopts
various probabilistic approaches to Man as a
Measurement Instrument, where instead of scatter, we
derive several alternative expressions for the probability
of successfully counting the number of dots, as described
in more detail below.
Fig. 4. Comparison of effectiveness (6), Rasch (3) and Weber (5) modelling (w =
4.2. Probabilistic approaches to subjective differences

Two different metrological approaches to deriving how
the probability of successful counting depends on mea-
sures of location and dispersion of perceptive judgments
over a range of stimulus values will be investigated here
in terms (resolution and bias) as one would use when char-
acterising a measurement instrument (in this case, the
human counter), as briefly reported earlier [9]. These will
be compared with a psychometric, Rasch analysis (Fig. 4).

4.2.1. Rasch
The Rasch approach [18–20] models individual proba-

bilities of success as the difference between person ability
h and level of challenge b; in the dichotomous (binary deci-
sion) case:

Psuccess ¼
e½h�b�

1þ e½h�b� ð4Þ

The response of a human when encountering a particu-
lar task or feature of an item will depend on a combination
of the characteristics of both the person and the item. In
traditional metrology, a separation of instrument and mea-
surement object is of course regularly achieved, such as
when determining the mass of a weight in terms of the cal-
ibrated response of a weighing instrument. Without that
separation, dispersion in the sought item attribute will be
masked by instrument dispersion. The Rasch approach
organizes observations and their representations in ways
that support the formation and testing of hypotheses con-
cerning the separability of person ability and task chal-
lenge to be made in human-based measurement.

For the actual multinomial case of counting by the
Mundurucu Indians, we adopt the corresponding polyto-
mous expression for the success score,

Psuccess;i;j ¼ v i;j;c ¼
e
Pc

k¼1
hi� bj�skð Þð Þ½ �

� �
PK

j¼1e
P j

k¼1
hi� bj�skð Þð Þ½ �

� � ð5Þ
0.17) of counting range 1–10 for the Mundurucu; squared loss function.
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of person i and count j, where sk is the Rasch-Andrich
threshold, that is, the point of equal probability on the
latent variable between categories k�1 and k. A logistic
regression is made between where observed, v i;j, and
expected scores, v 0i;j in which the sum of squared residuals,

Dv 02i;j;c ¼ ðmi;j � m0i;jÞ
2, is minimised, to yield individual esti-

mates of person ability h and level of challenge b.
No distributional assumptions are required, counts of

observed success in the assigned task are minimally suffi-
cient statistics [30,31], and individual ability measures are
expressed as the average difference between the person’s
location and each task’s location on the log-odds
continuum.

For this analysis, a weighted score: v i;j;c ¼ wðmi;j;c �MjÞ
is calculated for each count, j, test person, i, and category c.
The weighting factor, w, is some function of the distance
between the observed count, m, and the (known) stimulus
value (M), reflecting an increasing ‘penalty’ score as the
bias (shown in Fig. 2) increases: for instance for a squared

weighting: v i;j;c ¼ ðmi;j;c �MjÞ2. Other weightings investi-
gated include linear and exponential functions of the dis-
tance (as also employed below in modelling classification
effectiveness). Using proprietary software for Rasch analy-
sis [32], these scores are then analysed to produce esti-
mates of person ability hi and level of challenge bj across
the full set of observations of Mundurucu counting
j = 1 . . .10, as shown in Fig. 5.

In order to draw significant conclusions from the anal-
ysis, it is necessary to estimate limits to measurement
quality in the Rasch analysis. A so-called ‘construct alley’
[33] plot (Fig. 6) of the estimated Rasch level of challenge

b against the INFIT z-score
Dv 02

i;j;c

½v 02
i;j
�v2

i;j
� gives indications of the

precision and trueness of the Rasch estimates.
Fig. 5. Estimates of person ability h and level of challenge b across the full set o
For dichotomous observations, the model can be writ-
ten to include a measurement uncertainty term in the
scored response vi,j from Eq. (5) as follows:

v i;j ¼ Psuccess;i;j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Psuccess;i;j � ð1� Psuccess;i;jÞ

q
ð6Þ

from the well-known (Bernoulli) variance of the binomial
distribution. The binomial error distributions for dichoto-
mous scores approximate Gaussian distributions when
accumulated across all the observations, as they are in
the estimation process [34].

In the present case, all fitted points lie well within ±2
standard deviations along the z-score axis. Measurement
uncertainties are indicated along the Rasch b axes in both
Figs. 5 and 6.

The corresponding reliability coefficient, for instance for
Rasch b, is given by [33]:

Rb ¼
True variance

Observed variance
¼ varðb0Þ

varðbÞ

¼ varðbÞ � varðebÞ
varðbÞ ;where b ¼ b0 þ eb ð7Þ

Of course, the ‘true’ variance cannot be known, but it
can be estimated by subtracting the estimated measure-
ment variance from the total variance observed, as done
in Eq. (7).

Widespread references in the literature of psychological
research cite Nunnally’s classic text [35] as a source recom-
mending 0.70 as an acceptable minimum reliability indi-
cating the presence of more true variance than error
variance [36]. That recommendation, like the concept of
reliability itself, is widely misunderstood. Reliability coeffi-
cients are not the measures of unidimensionality or inter-
nal consistency they are often assumed to be [37].
f observations of Mundurucu counting 1 . . .10: squared weighting model.



Fig. 6. ‘Construct alley’ plot of the estimated Rasch level of challenge b against the INFIT z-score; squared weighting model.
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Reliability coefficients are most directly influenced by the
number of score groups distinguished via the number of
questions asked and the way the responses are categorised.
More distinctions generally give higher reliabilities, as the
model mean square error shrinks relative to the variance
[38]. Internal consistency only secondarily affects reliabil-
ity [39] and is more properly assessed in terms of model
fit [40].

Furthermore, the usual interpretation of Nunnally’s rec-
ommendation is flawed on at least two counts. First, relia-
bility is a property of data, not of an instrument. That is, by
definition, reliability coefficients can reasonably be
expected to range anywhere from 0.00 to 1.00 depending
on whether the measured sample varies much less than,
or many times more than, an error of measurement. This
issue is, of course, not in contention in conscientiously con-
ducted research that establishes definitive parameters and
conditions for the relevant population as a whole via
appropriate representative sampling. Few studies in psy-
chology operate at this level of sophistication.

The second problem with taking 0.70 as an acceptable
minimum reliability standard is that Nunnally recom-
mended it only for early stage research in which the risk
of failure is high. All that is desired in this kind of investiga-
tion is an inexpensive initial indication of potential returns
on investments in research in a new direction [36].
Nunnally recommended 0.80 for widely used scales, 0.90
for high stakes decision making, and 0.95 as the desirable
standard. The assumption in all of these recommendations,
of course, is that the sample measured is representative of
the entire range of variation in the relevant population.

A reliability of 0.80 corresponds with a separation ratio
G = 2, meaning that measurement uncertainty is not larger
than half the object standard deviation [41]. For the analy-
sis shown in Fig. 5, reliability was Rb,sqr = 0.73. Here var
(eb) = realSE(b)2 and

SEðhi; bj; skÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1P
i or j

PK
k¼1 k � p̂i;j;k �

Pc
c¼1c � p̂i;j;c

� �2
h i

vuut
A Rasch analysis of similar counting tasks has been
reported earlier by Mair [42] in the context of the develop-
ment of a neuropsychological test battery for number pro-
cessing and calculation in children (in a Western culture),
where the counting of dots belongs to the most elementary
tasks [43]. Their studies indicated that, given a limited
time to count dots, faster children were found to count
some of the points while estimating the rest, while slower
children could only estimate. This difference in counting
strategy led to indications of different dimensions in the
Rasch analysis [42].

According to the present Rasch analysis, the most chal-
lenging countings for the Mundurucu are those for dot
numbers higher than 7. A striking observation is that even
the ‘easiest’ task – counting just one dot – seems to be a bit
of a challenge, since the test persons estimate 1 dot as
being closer to a count of 2. Dehaene et al. [22] discuss var-
ious effects, but our explanation is that there is scale over-
estimation at the low count, left hand end of the measure-
ment scale – where the respondent refrains from marking
the least point on the scale, but places the mark higher. In
total, there seem to be three distinct regions when analys-
ing 1–10: (i) low counts overestimation on the screen; (ii)
middle section (3–7) fairly accurate counting; and (iii) 8–
10 increasingly challenging counting.

For comparison with the following alternative proba-
bilistic approaches, a plot is made (Fig. 4) of the probabil-
ities of success in counting, according to Eq. (3), versus
the stimulus values, using the Rasch estimates of person
ability h and level of challenge b across the full set of obser-
vations of Mundurucu counting 1, . . .,10.

4.2.2. Weber resolution
A surprising result of the research of Dehaene et al. [22]

is that the familiar logarithmic dependence on stimulus
level seen for the human senses seems to apply equally
well to counting ability. That is, the human response is pro-
portional to the fractional, rather than absolute, stimulus
levels. The constant of proportionality between response
and fractional stimulus is called the ‘Weber’ constant,
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values of which can range from 1 to 0.1 for the acuity of
‘‘number sense’’ for people of different counting abilities
(from infants to educated adults) [44]. For the
Mundurucu, the Weber constant has been previously esti-
mated as 0.17, corresponding to a threshold of cognitive
counting at about 6 or 7 dots, i.e., w ¼ 7�6

6 ¼ 0:17, as done
in ref [44].

A first alternative approach to Rasch in estimating the
probability of successful counting expresses the ability to
distinguish (‘resolve’) adjacent counts with stimulus val-
ues, sj = j, in terms of the distance, D(Ri), between different
(Normal) distributions, P ¼ Nðsj;u2

j Þ, centred at each
respective mean count, s, and the perceptive uncertainty
uj ¼ w � sj. One can have different models of how the
human brain perceives each cloud of dots when counting:
we have adopted a continuous Gaussian distribution, as
other researchers have done previously, e.g. in Ref. [44].
This resolution approach is an example of the ‘choice para-
digm’ as dealt with in psychophysics [45]. That is, accord-
ing to the human observer, which is the most preferred or
possesses most of some perceived attribute shared by a
series of stimuli?

This approach is applied in the present work, where the
ability to resolve adjacent pairs of stimuli (a,b) – i.e. counts
– is estimated in terms of the standard uncertainty in the

distance given by ua;b ¼ w �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

a þ s2
b

q
. In this dichotomous

case, the counting efficiency, Psuccess, is then expressed in
terms of an error rate defined as the area under the overlap
in two count distributions [44]. Assuming Gaussian distri-
butions, this overlap of two Gaussians will also be a
Gaussian, for which the probability of successfully resolv-
ing the pair of stimuli is estimated as:

Psuccess ¼ 1� 0:5 � erfc
jsa � sbjffiffiffi

2
p
�w �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

a þ s2
bÞ

q
2
64

3
75 ð8Þ

For comparison with the other probabilistic approaches,
a plot is made (Fig. 4) of the probabilities of success in
counting, according to Eq. (8), versus the stimulus values,
across the full set of observations of Mundurucu counting
1, . . .,10, where the only free parameter is the Weber con-
stant w (= 0.17) As can be seen in Fig. 4, these resolution-
based estimates of Psuccess agree well with the other
approaches for counts below the ‘worst-sorting’ threshold,
but seem to over-estimate counting success for higher,
more challenging counts. Future work would address an
extended model where, especially for the higher counts,
more than pairs of distributions (such as shown in Fig. 2)
centred on adjacent counts would be accounted for in a
modified (‘‘multiresolution’’) version of Eq. (8). Iverson
and Luce [45] point out some of the challenges of mod-
elling choice in psychophysics in tasks more complex than
pair comparisons of stimuli.

4.2.3. Classification effectiveness in terms of counting bias on
ordinal scale

Our first preliminary brief report in a conference pro-
ceedings [9] also recalled an approach to overcoming the
traditional limitations of statistical measures of location
and dispersion on such scales by the inclusion of a cost
function as a distance metric. As noted for the PMF shown
in Fig. 2, limited measurement quality leads not only to
measurement uncertainty but above all to incorrect classi-
fication. Following this approach, a measure of the effec-
tiveness, Eff, of sorting on an ordinal scale has been
proposed [46,47] as:

Effj ¼ 1� ELj

ELWS
ð9Þ

where ELj is the expected loss associated with incorrect
classification at level j and ELWS is the worst-sorting case
loss. In this second alternative approach to Rasch, the prob-
ability of successful counting is simply equated with the
sorting effectiveness, i.e. Psuccess;j ¼ Effj. The expected loss,
and thereby the classification efficiency, associated with
incorrect counts, are expressed as functions of the ‘bias’
ec ¼ rc � sc for each count category, c (rather than using
the difference in adjacent counts used in the Weber resolu-
tion approach above). The ‘worst-sorting’ case would cor-
responding to a completely incorrect sorting, essentially a
random guesswork classification, as described in Ref.
[46–47], with a uniform PMF across the different cate-
gories. A number of cost models have been investigated
in the present work: linear ELc ¼ Cost � ec; parabolic
ELc ¼ Cost � e2

c (illustrated in Fig. 2); and exponential
ELc ¼ Cost � eec . One can calculate the expected loss as the
accumulated loss per category for each count PMF, (here
for the squared model) as [6]:

ELj ¼
XC

c¼1

Pj;M;c � Cost �wj;c ¼
XC

c¼1

Pj;M;c � Cost � e2
j;c

¼
XC

c¼1

Pj;M;c � Cost � ðv j;c � v 0j;MÞ
2 ð10Þ

Referring again to Fig. 4, the probabilities of success in
counting, according to Eq. (9), with a squared cost model,
are contrasted with the stimulus values, across the full
set of observations of Mundurucu counting 1, . . .,10.
Using other cost models makes little difference (within
uncertainties) to the classification effectiveness for these
bias-based estimates of Psuccess which agree well with the
other approaches for counts below the ‘worst-sorting’
threshold, but seem to under-estimate counting success
for higher, more challenging counts.

4.3. Exploring links between the probabilistic approaches to
counting classification

The Rasch model [Section 4.2.1, Eq. (3)] has been con-
nected to the Shannon entropy, H, in communicating infor-
mation about a binary observation [48] through the
relation:

HðPsuccessÞ ¼ � Psuccess � logðPsuccessÞ þ ð1� PsuccessÞ½

� logð1� PsuccessÞ� ¼
Z
�z � dPsuccess ð11Þ

where z ¼ log Psuccess
1�Psuccess

h i
¼ h� b, the familiar Rasch psycho-

metric log-odds, is the explanatory variable in
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Generalised Linear models behind the success in counting
in the present study. One can regard Psuccess as a measure
of the dissimilarity (‘‘psychometric function’’), that is, the
probability of judging that one stimulus is greater than
another. The integral of z in Eq. (11) corresponds to esti-
mating the subjective distance, D(a,b) between two per-
ceived stimuli (a,b) by cumulating the psychometric
function between the adjacent stimuli in so-called
Fechnerian scaling [49]. These relations can be extended
to the multinominal, polytomous case, as required.

The logarithmic dependence of counting response on
stimulus level, dealt with in Section 4.2.2, is a special case
where a change in the psychometric function is propor-
tional to the fractional change in stimulus level – with
the Weber constant of proportionality, w [49]. Sun et al.
[16] have observed independently that the change in
instrument sensitivity (gradient of C (Fig. 3) – termed by
them the ‘psychophysical scale’) – is inversely proportional
to the fractional stimulus change when entropy coding is
allowed.

The reasonable agreement evident from Fig. 4 between
different estimates of Psuccess across the range of counting
challenge means that the different expressions (5), (8)
and (9) can be equated, in line with our aim of gaining
insight into the aspects which unite these different
approaches. Each approach has its own version of diver-
gence metric, often invoked in decision-making for
instance based on maximum likelihood, and the equalities
found imply equivalence between these metrics, which in
informational or statistical inference go under various
names such as: Information divergence/relative entropy;
Kolmogorov/error divergence; v2 divergence; etc, but nev-
ertheless seem to give convergent results. As an indication
of future work beyond maximum likelihood, reference can
be made to the modelling of the adaptation by biological
sensory systems, for example, where visual perception
adjusts to variations in observation environment.
Grzywacz and Balboa [17] postulate that minimising the
costs of perceptual task errors modelled in Section 4.2.3,
and not only maximising likelihoods, is a major goal of
such biological adaptation.

Invariant measure theory, allowing the level of chal-
lenge b for a particular task (such as counting a certain
number of dots) to be estimated independently of who is
doing the counting permits the identification of a metro-
logical standard for counting challenge. Similarly, an esti-
mate of each person’s ability h to count for a range of
tasks of different challenge can be metrologically cali-
brated by measuring a task of known challenge. As in tra-
ditional metrology, this traceability allows all the
advantages of objectively comparable measurement.

5. Discussion

Early psychometricians extended the Weber–Fechner
law from psychophysics to psychological and social con-
structs. Unexpected new capacities for meaningfully inter-
preting measures, and for taking missing data into account,
emerged in the process.

Qualitatively meaningful measures can be interpreted
in terms of experimentally reproducible, invariant
hierarchies formed by the difficulty or agreeability of the
questions asked in an assessment or survey [50].
Numbers are no longer mere digits but instead denote con-
sistent variation in the thing measured supported by both
theory and data, allowing interpretation of the ordered
hierarchy as a matter of a learning progression or develop-
mental sequence. Individual measures could now be
expressed not only numerically, but in terms of perfor-
mance levels related to theoretically justified learning pro-
gressions [51]. As empirical estimation is complemented
by predictive theories, measurement in psychology is
advancing into previously unimagined new efficiencies in
research and practice [52,53].

Another area of practical innovations concerns the
equating of different instruments (tests, surveys, and
assessments) intended and shown to measure the same
thing [52]. In the same way that data from different sets
of examinees or respondents reproduces invariant item
hierarchies across samples, so, too, do item hierarchies
exhibit shared, invariant features across item sets.
Theory-based equating methods can complement data-
based methods as predictive control of these hierarchies
improves [53]. Linking different instruments measuring
the same thing to a common unit of measurement that is
substantively interpretable in a shared frame of reference
appears to provide a basis for exploring new metrological
vistas.

6. Conclusion

This study provides another source of theory and evi-
dence in support of the idea that some form of metrological
traceability may be feasible for the objects of psychological
and social measurement [7,8]. The feasibility of this aim is
further supported by previous work that has similarly
employed necessary and sufficient estimators [30,31] of
model parameters derived from Rasch’s separability theo-
rem [19] to (1) reproduce SI units from ordinal observa-
tions of length, density, and weight [54–56], to (2)
demonstrate that different rating scale instruments
intended to measure the same thing can converge on the
same construct and could be equated [7], and to (3) illus-
trate theoretical control over the reproduction of the mea-
sured construct [52,53]. Research in progress is
investigating whether the everyday cognitive processes
adapted in scientific model-based reasoning [57] might
also be identified and emphasized in psychological and
social measurement.

This study shows that experimental evaluations of con-
crete counts have the potential of providing evidence as to
the feasibility of invariant units of measurement, cali-
brated instrumentation, construct theories, and shared
frames of reference. A central goal will be practical applica-
tions taking advantage of the efficiencies obtained from
theory-based reproductions of expected response patterns,
situating them in a context of known uncertainties and
guidance concerning what to do in the inevitable instances
in which expectations are contradicted. Judicious applica-
tion of a balanced combination of theory, experiment,
and calibrated instrumentation is a shared interpretive
framework may enable more widespread appreciation of
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the value in Feynman’s point that, ‘‘What I cannot create, I
do not understand’’ [58], and may expand the horizons of
research in psychology and the social sciences [59].
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